
Generic RLC circuit analysis 
 
We just saw the two new devices, capacitors and inductors, with their respective voltage-to-
current relationships  
 

𝑖!(𝑡) = 𝐶
𝑑𝑣!(𝑡)
𝑑𝑡 𝑖"(𝑡) =

1
𝐿 +𝑣"

(𝑠)𝑑𝑠
#

 

 
A natural question is how such devices impact our ability to analyze circuits. As an example, 
consider this configuration  
 

 
 

How do we start? Well, if instead of the capacitor and inductor we had resistors, as in this figure 
 

 
then you would probably use node analysis (as suggested by my marks in red). Specifically, you 
could write the two node equations  
 

𝐴 − 𝑉$(𝑡)
40 +

𝐴
80 +

𝐴 − 𝐵
50 = 0 

 
𝐵
200 +

𝐵
25 +

𝐵 − 𝐴
50 = 0 

 
and then solve using standard algebraic methods. So, let’s start the same way on the original 
RLC (resistor and inductor and capacitor) circuit. Marking the nodes in the same way  

 



 
We can write the first node equation (for 𝐴) as  
 

𝐴(𝑡) − 𝑉$(𝑡)
40 + 𝑖!(𝑡) +

𝐴(𝑡) − 𝐵(𝑡)
50 = 0 

 
in which I have included time notation for all of the terms and just written the capacitor current 
(defined as downwards) as 𝑖!(𝑡) since I cannot use Ohm’s Law on that branch. However, we can 
use the definition for the capacitor current in terms of its voltage 𝐴(𝑡) to get the first node 
equation as  
 

𝐴(𝑡) − 𝑉$(𝑡)
40 + 5 × 10%&

𝑑𝐴(𝑡)
𝑑𝑡 +

𝐴(𝑡) − 𝐵(𝑡)
50 = 0 

 
Similarly, the node equation at 𝐵 needs the current for the inductor in terms of its voltage 𝐵(𝑡) 
 

𝐵(𝑡)
200 +

1
0.05 +𝐵

(𝑢)𝑑𝑢
#

+
𝐵(𝑡) − 𝐴(𝑡)

50 = 0 

 
Since this has an integral in it, we take the time derivative of both sides to yield a second 
differential equation  
 

1
200

𝑑𝐵(𝑡)
𝑑𝑡 + 20	𝐵(𝑡) +

1
50
𝑑𝐵(𝑡)
𝑑𝑡 −

1
50
𝑑𝐴(𝑡)
𝑑𝑡 = 0 

 
At this point, reorganizing the terms and doing a little algebra to get the coefficients of the 
derivative terms to equal one (a standard practice), we have the two differential equations 
 

𝑑𝐴(𝑡)
𝑑𝑡 + 90	𝐴(𝑡) − 40	𝐵(𝑡) = 50	𝑉$(𝑡) 

 
and 

	
𝑑𝐵(𝑡)
𝑑𝑡 + 800	𝐵(𝑡) − 0.8

𝑑𝐴(𝑡)
𝑑𝑡 = 0 

 
 
 



We note several things about these equations: 
o They are both linear (i.e. the terms with 𝐴(𝑡) or 𝐵(𝑡) are just linear functions, no squares 

or anything else) with constant coefficients. 
o They are coupled (both equations include terms with both with 𝐴(𝑡) and 𝐵(𝑡)). 

As such, lots is known on their joint solution (finding equations for 𝐴(𝑡) and 𝐵(𝑡) and hopefully 
you have either seen this already or are seeing it now in MTH 244). Let’s quickly summarize the 
process. 
 
Step 1 – combining into a single differential equation 
 
As a first step, we usually combine the two equations into a single equation in terms of just 𝐴(𝑡) 
or 𝐵(𝑡). The process is similar to what we do in simultaneous equations when we eliminate 
variables by multiplying the equations by the coefficients of the other equations and adding. For 
this case, let’s rewrite the two differential equations using the “D” operator to represent 
differentiation (dropping the explicit time notation) as  
 

(𝐷 + 90)	𝐴 − 40	𝐵 = 50	𝑉$ 
 

−0.8𝐷𝐴 + (	𝐷 + 800)	𝐵 = 0 
 
To eliminate 𝐵 we multiply the first equation by (	𝐷 + 800), multiply the second by 40, and 
then add the results. This is  
 
(	𝐷 + 800)(𝐷 + 90)	𝐴 − 40(	𝐷 + 800)	𝐵 − 32𝐷𝐴 + 40(	𝐷 + 800)	𝐵 = 50(	𝐷 + 800)	𝑉$ 

 
Simplifying  
 

(𝐷' 	+ 858𝐷 + 72,000)	𝐴 = 50(	𝐷 + 800)	𝑉$ 
 
Returning to differential notation, this is  
 

𝑑'𝐴(𝑡)
𝑑𝑡' + 858		

𝑑𝐴(𝑡)
𝑑𝑡 + 72,000		𝐴(𝑡) = 50	

𝑑𝑉$(𝑡)
𝑑𝑡 + 40,000		𝑉$(𝑡) 

 
a second order, linear, constant coefficient differential equation. What about 𝐵(𝑡)? In a similar 
fashion, eliminating 𝐴(𝑡) yields a second order differential equation for 𝐵(𝑡)? 
 

	
𝑑'𝐵(𝑡)
𝑑𝑡' + 858		

𝑑𝐵(𝑡)
𝑑𝑡 + 72,000		𝐵(𝑡) = 40	

𝑑𝑉$(𝑡)
𝑑𝑡  

 
We note (!) that the coefficients of 𝐵(𝑡) and its derivatives on the left-hand side of this second 
result are exactly the same as those in the equation for 𝐴(𝑡). Further, this same thing happens no 
matter what voltage or current we are solving for in our circuit; the left-hand side of the 
differential equation is always the same for all circuit voltages and currents and depends only 
upon the circuit configuration and the component values (not any applied sources). We will 
consider this fact again later in the semester.  



Step 2 – solving this single variable differential equation 
 
As discussed in math classes on differential equations, the solution to a linear, constant 
coefficient differential equation consists of two parts, the homogeneous and particular solutions. 
For this discussion, let’s focus on finding 𝐵(𝑡) 
 

𝑑'𝐵(𝑡)
𝑑𝑡' + 858		

𝑑𝐵(𝑡)
𝑑𝑡 + 72,000		𝐵(𝑡) = 𝑌(𝑡) 

 
in which 𝑌(𝑡) = 40	 ()!(#)

(#
 is the right-hand side and is not a function of 𝐵(𝑡).  The general 

solution to such a differential equation is of the form  
 

𝐵(𝑡) = 𝐵,-.-/010-23(𝑡) + 𝐵456#782956(𝑡) 
 

• The homogeneous part of the result is the solution to the equation without the right-hand 
side  

 
𝑑'𝐵(𝑡)
𝑑𝑡' + 858		

𝑑𝐵(𝑡)
𝑑𝑡 + 72,000		𝐵(𝑡) = 0 

 
It is well known that this equation is only satisfied by exponential functions of the form  

 
	𝐵,-.-/010-23(𝑡) = 𝑎𝑒3# 

 
in which 𝑎 is an arbitrary constant and 𝑠 must satisfy the quadratic equation formed from 
the coefficients of the differential equation  
 

𝑠' + 858	𝑠 + 72,000	 = 0 
 
Since this quadratic has exactly two roots (−94.3 and −764, to 3 significant digits), then 
the general form of the homogeneous solution must take both into account, each with its 
own arbitrary coefficient. In general, since we started with a differential equation with 
real coefficients, we know that the roots are either both real or they form a complex 
conjugate pair. In this case, with distinct real roots, the solution is  
 

𝐵,-.-/010-23(𝑡) = 𝑎$𝑒%:&.<# + 𝑎'𝑒%=>&# 
 

In our circuit problems we have the added feature that the coefficients in the differential 
equations are always non-negative, so the real part of both roots is always negative and 
the homogeneous solution always trends toward zero exponentially quickly as time 
increases. This leads to our calling this portion of the solution the “transient” part in that 
it disappears as time increases. And for many circuits, this portion of the solution 
disappears quite quickly (e.g. in much, much less than a second as in this case).  
 



Finally, the full solution for this part of the problem requires finding the multiplicative 
constants, 𝑎$ and 𝑎'. The usual approach requires forcing known conditions on the 
circuit at some point in time (for example, using knowledge of the capacitor voltage and 
the inductor current at time equal to zero). We will return to this issue later in the 
semester and focus our attention for this moment on the particular solution. 
 

• The particular part of the result for 𝐵(𝑡) depends upon the functional form of the right-
hand side of the differential equation, written above as 𝑌(𝑡).  In differential equation 
courses this is usually accomplished by resorting to a table such as this one that I found 
online:  

 
Specifically, you find the functional form of your right-hand side in the first column and 
use the form in the second column with unknown parameters (the 𝐾’s). The unknowns 
are found by plugging the particular solution back into the original differential equation 
(taking derivatives as necessary) and equating the result to the known right-hand side, 
𝑌(𝑡).  

 
For ELE 212 we are primarily interested in only two of these cases: 
 

o A DC source: 𝑉$(𝑡) = 𝑉3 so that 𝑌(𝑡) is a constant. In this case the particular 
solution is also a constant  

 
𝐵456#782956(𝑡) = 𝑎 

 
We will return to this case later in the semester.  
 

o A	sinusoidal	source:	𝑉$(𝑡) = 𝑉3 cos(𝜔𝑡 + 𝜙), a sinusoid in which 𝑉3 is the 
amplitude, 𝜔 is the frequency measured in radians per second, and 𝜙 is some 
phase angle. For our example, let 𝑉$(𝑡) = 10 cos(500𝑡) so that  

 

𝑌(𝑡) = 40	
𝑑𝑉$(𝑡)
𝑑𝑡 = −200,000 sin(500𝑡) 

 



While the table suggests using a sum of a sine and cosine at frequency 𝜔 = 500, 
it will be more convenient to use the equivalent form  

 
𝐵456#782956(𝑡) = 𝐵 cos(500𝑡 + 𝜃) 

 
with two parameters, the amplitude 𝐵 and a phase shift 𝜃.	Plugging this into our 
differential equation and using lots of trigonometry it is possible to solve for both 
𝐵 and 𝜃; the details appear below.  
 

Finally, for both of these cases the particular solution remains non-zero for all time, either 
a constant or a sinusoid, so we will give this portion another name, calling it the “steady-
state” part of the solution.  

 
As I hope that you can see, the analysis of a general RLC circuit is quite complicated 
(both getting the differential equation and then solving it). In class we will next be 
introducing a much simpler approach for finding the steady-state solution, called the 
“phasor method.” 
 

Step 3 – solving for the particular solution for a sinusoidal source 
 
As an example of finding 𝐵 and 𝜃, let’s plug 𝐵(𝑡) = 𝐵 cos(500𝑡 + 𝜃)	into the differential 
equation for 𝐵(𝑡). Using the facts that the first and second derivatives of a cosine are the 
negative sine and negative cosine, respectively, we have  
 

−500'	𝐵 cos(500𝑡 + 𝜃) − 858 × 500	𝐵 sin(500𝑡 + 𝜃) + 72,000	𝐵 cos(500𝑡 + 𝜃) 
 

= −200,000 sin(500𝑡) 
 
To simplify this expression, use the trigonometric identities  
 

sin(500𝑡 + 𝜃) = sin 500𝑡 cos 𝜃 + cos 500𝑡 sin 𝜃 
and 

cos(500𝑡 + 𝜃) = cos 500𝑡 cos 𝜃 − sin 500𝑡 sin 𝜃 
 
to yield 
 

−250,000	𝐵 cos 500𝑡 cos 𝜃 + 250,000	𝐵 sin 500𝑡 sin 𝜃 − 429,000	𝐵 sin 500𝑡 cos 𝜃 
 

−429,000	𝐵 cos 500𝑡 sin 𝜃 + 72,000	𝐵 cos 500𝑡 cos 𝜃 − 72,000	𝐵 sin 500𝑡 sin 𝜃 
 

= −200,000 sin(500𝑡) 
 
Let’s gather like terms with the cosine and sine of 500𝑡 
 

[	−250,000	𝐵 cos 𝜃 − 429,000	𝐵 sin 𝜃 	+ 72,000	𝐵 cos 𝜃] cos 500𝑡 
 



+[	250,000	𝐵 sin 𝜃 − 429,000	𝐵 cos 𝜃 − 72,000	𝐵 sin 𝜃 + 200,000	] sin𝜔𝑡 = 0 
 
I realize that this still looks pretty formidable but bear with me. Notice that I’ve added brackets 
to isolate terms that are not time varying from those that are.   
 
This equality is required to be satisfied for all values of time; let’s consider a few specific ones. 
Let 𝑡 = 0; since cos 0 = 1 and sin 0 = 0 the requirement is then  
 

−178,000	𝐵 cos 𝜃 − 429,000	𝐵 sin 𝜃 = 0 
 
Manipulating this  
 

−178,000	𝐵 cos 𝜃 = 429,000	𝐵 sin 𝜃 
 
or 

−
178
429 	= 	

sin 𝜃
cos 𝜃 

 
or  

tan 𝜃 = −0.415		 ⟹ 		𝜃 = −22.5° 
 
and we have the angle! (Strictly, since we will want angles on a full 360° range, this would also 
be satisfied adding 180° or 𝜃 = 157.5°; more on this below.) Next, consider 𝑡 = ?

'
; since 

cos ?
'
= 0 and sin ?

'
= 1 the requirement is  

 
178,000	𝐵 sin 𝜃 − 429,000	𝐵 cos 𝜃 + 200,000 = 0 

 
Since we know the value for 𝜃 we can manipulate this expression to  
 

𝐵 =
200,000

429,000	 cos 𝜃 − 178,000	 sin 𝜃 = 	0.431 

 
So the answer is  
 

𝐵3#05(@%3#5#0(𝑡) = 431 cos(500𝑡 − 22.5°) 	𝑚𝑉 
 
 

Finally, you might ask, “What about using 𝜃 = 157.5°?” In that case we get 𝐵 = −	0.431 and 
since we normally thin of amplitudes as positive, we will choose the original angle.  
 
 
 
 
 
 



The Phasor Solution 
 
Let’s repeat this problem with phasors.  
 
Step 1 – convert the source to a phasor and the components to impedances using 𝜔 = 500 
rad/sec 
 

	𝑉$ = 10 𝑍" = 𝑗𝜔𝐿 = 𝑗25 𝑍! =
1
𝑗𝜔𝐶

= −𝑗4 

 

 
Step 2 – write the node equations using Ohm’s Law on impedances  
 

𝐴 − 10
40 +

𝐴
−𝑗4 +

𝐴 − 𝐵
50 = 0 

 
𝐵
𝑗25 +

𝐵
200 +

𝐵 − 𝐴
50 = 0 

 
Step 3 – solve for 𝐵 – I’ll use Cramer’s rule: 
 

𝐵 =

]
1
40 +

1
50 +

1
−𝑗4

1
4

− 1
50 0

]

^

1
40 +

1
50 +

1
−𝑗4 − 1

50

− 1
50

1
200 +

1
50 +

1
𝑗25

^

=
1
4
1
50

_ 140 +
1
50 +

1
−𝑗4` _

1
200 +

1
50 +

1
𝑗25` − a

1
50b

' 

 
Evaluating this expression 
 

𝐵 =
0.005

0.123 + 𝑗0.0132 = 0.398 − 𝑗0.165 = 0.431	∠ − 22.5° 

so 
𝐵3#05(@%3#5#0(𝑡) = 431 cos(500𝑡 − 22.5°) 	𝑚𝑉 

 
MUCH EASIER! 


