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Figure B.1
Graphical representation of a
complex number.

The complex plane looks like the 
two-dimensional curvilinear coordinate
space, but it is not.

Appendix B
Complex Numbers

The ability to manipulate complex numbers is very handy in circuit
analysis and in electrical engineering in general. Complex numbers are
particularly useful in the analysis of ac circuits. Again, although cal-
culators and computer software packages are now available to manip-
ulate complex numbers, it is still advisable for a student to be familiar
with how to handle them by hand.

Representations of Complex
Numbers

A complex number z may be written in rectangular form as

(B.1)

where x is the real part of z while y is the imaginary part
of z; that is,

(B.2)

The complex number z is shown plotted in the complex plane in
Fig. B.1. Since ,

(B.3)

A second way of representing the complex number z is by speci-
fying its magnitude r and the angle it makes with the real axis, as
Fig. B.1 shows. This is known as the polar form. It is given by

(B.4)

where

(B.5a)

or

(B.5b)

that is,

(B.6)z � x � jy � rlu � r cos  u � jr sin u

x � r cos u,  y � r sin u

r � 2x2 � y2,  u � tan 
�1

 
y

x

z � 0z 0lu � rlu

u

 j 
n�4 � j 

n

o
 j 

5 � j � j 
4 � j

 j 
4 � j 

2 � j 
2 � 1

 j 
3 � j � j 

2 � �j

 j 
2 � �1

 
1

j
� �j

j � 1�1

x � Re(z),  y � Im(z)

j � 1�1;

z � x � jy

B.1

A-9
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Express the following complex numbers in polar and exponential form:
(a) (b) (c) (d) 

Solution:
Notice that we have deliberately chosen these complex numbers to fall
in the four quadrants, as shown in Fig. B.2.
(a) For (1st quadrant),

Hence, the polar form is and the exponential form is 
(b) For (4th quadrant),

r2 � 262 � (�8)2 � 10,  u2 � 360� � tan 
�1

 

8

6
� 306.87�

z2 � 6 � j8
10e 

j53.13�.10l53.13�

r1 � 262 � 82 � 10,  u1 � tan 
�1

 

8

6
� 53.13�

z1 � 6 � j8

z4 � �6 � j8.z3 � �6 � j8,z2 � 6 � j8,z1 � 6 � j8,
Example B.1

In the exponential form, z re j so
that dz�d jre j jz.�uu �

u�

In converting from rectangular to polar form using Eq. (B.5), we must
exercise care in determining the correct value of These are the four
possibilities:

(B.7)

assuming that x and y are positive.
The third way of representing the complex z is the exponential

form:

(B.8)

This is almost the same as the polar form, because we use the same
magnitude r and the angle 

The three forms of representing a complex number are summa-
rized as follows.

(B.9)

The first two forms are related by Eqs. (B.5) and (B.6). In Section B.3
we will derive Euler’s formula, which proves that the third form is also
equivalent to the first two.

 z � re 
ju,   ar � 2x2 � y2, u � tan 

�1
 

y

x
b  Exponential form

 z � rlu,   ar � 2x2 � y2, u � tan 
�1

 

y

x
b  Polar form

 z � x � jy,  (x � r  cos u, y � r sin u)   Rectangular form

u.

z � re 
ju

 z � x � jy,   u � 360� � tan 
�1

 

y

x
   (4th Quadrant)

 z � �x � jy,   u � 180� � tan 
�1

 

y

x
   (3rd Quadrant)

 z � �x � jy,   u � 180� � tan 
�1

 

y

x
   (2nd Quadrant)

 z � x � jy,   u � tan�1 
y

x
   (1st Quadrant)

u.
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−j2
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−j8

−j6

−j4

Im

Figure B.2
For Example B.1.

Convert the following complex numbers into rectangular form:
(a) , (b) , (c) , (d) .

Solution:

(a) Using Eq. (B.6),

Note that is the same as 
(b) We can write

(c) Similarly,

(d) Finally,

20e�jp�3 � 20 cos(�p�3) � j20 sin(�p�3) � 10 � j17.32

8e 
j10� � 8 cos 10� � j8 sin 10� � 7.878 � j1.389

�50l285� � �50 cos 285� � j50 sin 285� � �12.94 � j48.3

� 300�.u � 360� � 60�u � �60�

12l�60� � 12 cos(�60�) � j12 sin(�60�) � 6 � j10.39

20e 
�jp�38e 

j10��50l285�12l�60�
Example B.2

Convert the following complex numbers to polar and exponential forms:
(a) (b) (c) (d) 

Answer: (a) , (b) ,

(c) , (d) 7.071l171.9�, 7.071e 
j171.9�.9.487l251.6�, 9.487e j251.6�

13l67.38�, 13e 
j67.38�5l306.9�, 5e 

j306.9�

z4 � �7 � j.z3 � �3 � j9,z2 � 5 � j12,z1 � 3 � j4,
Practice Problem B.1

so that the polar form is and the exponential form is 
The angle may also be taken as , as shown in

Fig. B.2, so that the polar form becomes and the
exponential form becomes 
(c) For (2nd quadrant),

Hence, the polar form is and the exponential form
is
(d) For (3rd quadrant),

so that the polar form is and the exponential form
is 10e 

j233.13�.
10l233.13�

r4 � 2(�6)2 � (�8)2 � 10,  u4 � 180� � tan 
�1

 

8

6
� 233.13�

z4 � �6 � j8
10e 

j126.87�.
10l126.87�

r3 � 2(�6)2 � 82 � 10,  u3 � 180� � tan 
�1

 

8

6
� 126.87�

z3 � �6 � j8
10e�j53.13�.

10l�53.13�
�53.13�u210e 

j306.87�.
10l306.87�

Appendix B Complex Numbers A-11

Find the rectangular form of the following complex numbers:
(a) , (b) , (c) , (d) .

Answer: (a) , (b) , (c) , (d) .j508.66 � j522.94 � j32.776.928 � j4

50e 
jp�210e�j30�40l305��8l210�

Practice Problem B.2
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Mathematical Operations
Two complex numbers and are equal if
and only if their real parts are equal and their imaginary parts are equal,

(B.10)

The complex conjugate of the complex number is

(B.11)

Thus, the complex conjugate of a complex number is found by replac-
ing every j by .

Given two complex numbers and 
their sum is

(B.12)

and their difference is

(B.13)

While it is more convenient to perform addition and subtraction of
complex numbers in rectangular form, the product and quotient of the
two complex numbers are best done in polar or exponential form. For
their product,

(B.14)

Alternatively, using the rectangular form,

(B.15)

For their quotient,

(B.16)

Alternatively, using the rectangular form,

(B.17)

We rationalize the denominator by multiplying both the numerator and
denominator by .

(B.18)
z1

z2
�

(x1 � jy1)(x2 � jy2)

(x2 � jy2)(x2 � jy2)
�

x1x2 � y1y2

x 2
2 � y 2

2 � j 

x2 
y1 � x1y2

x 2
2 � y 2

2

z2*

z1

z2
�

x1 � jy1

x2 � jy2

z1

z2
�

r1

r2
 lu1 � u2

 � (x1x2 � y1y2) � j(x1y2 � x2y1)

 z1z2 � (x1 � jy1)(x2 � jy2)

z1z2 � r1r2lu1 � u2

z1 � z2 � (x1 � x2) � j( y1 � y2)

z1 � z2 � (x1 � x2) � j( y1 � y2)

jy2 � r2lu2,
z2 � x2 �z1 � x1 � jy1 � r1lu1

�j

z* � x � jy � rl�u � re�ju

z � x � jy

x1 � x2,  y1 � y2

z2 � x2 � jy2z1 � x1 � jy1

B.2

A-12 Appendix B Complex Numbers

We have used lightface notation for
complex numbers—since they are
not time- or frequency-dependent—
whereas we use boldface notation
for phasors.

Example B.3 If , find: (a) , (b) .

Solution:

(a) If , then and

so that

A*(A � B) � (2 � j5)(6 � j) � 12 � j2 � j30 � 5 � 7 � j32

A � B � (2 � 4) � j(5 � 6) � 6 � j

A* � 2 � j5A � 2 � j5

(A � B)�(A � B)A*(A � B)A � 2 � j5, B � 4 � j6
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Evaluate:

(a) (b) 

Solution:

(a) Since there are terms in polar and exponential forms, it may be best
to express all terms in polar form:

Thus,

(b) We can evaluate this in rectangular form, since all terms are in that
form. But

Hence,

 �
108 � j56 � j81 � 42

925
� 0.1622 � j0.027

 
j(3 � j4)*

(�1 � j6)(2 � j)2 �
�4 � j3

�27 � j14
�

(�4 � j3)(�27 � j14)

272 � 142

 � �27 � j14

 (�1 � j6)(2 � j)2 � (�1 � j6)(3 � j4) � �3 � 4j � j18 � 24

 (2 � j)2 � 4 � j4 � 1 � 3 � j4

 j(3 � j4)* � j(3 � j4) � �4 � j3

(2 � j5)(8e 
j10�)

2 � j4 � 2l�40�
�

43.08l78.2�

4.454l37.54�
� 9.672l40.66�

 � 3.532 � j2.714 � 4.454l37.54�

 2 � j4 � 2l�40� � 2 � j4 � 2 cos(�40�) � j2 sin(�40�)

 (2 � j5)(8e 
j10�) � (5.385l68.2�)(8l10�) � 43.08l78.2�

 2 � j5 � 222 � 52ltan�1
 5�2 � 5.385l68.2�

j(3 � j4)*

(�1 � j6)(2 � j)2

(2 � j5)(8e 
j10�)

2 � j4 � 2l�40�

Example B.4

(b) Similarly,

Hence,

 �
�12 � j66 � j2 � 11

(�2)2 � 112 �
�23 � j64

125
� �0.184 � j0.512

 
A � B

A � B
�

6 � j

�2 � j11
�

(6 � j)(�2 � j11)

(�2 � j11)(�2 � j11)

A � B � (2 � 4) � j(5 � �6) � �2 � j11

Appendix B Complex Numbers A-13

Practice Problem B.3Given that and calculate:
(a) , (b) , (c) .

Answer: (a) , (b) (c) 6.045 � j11.53.�5.19 � j 6.776,�103 � j26

2CD�(C � D)D2�C*(C � D*)(C � D*)
D � 8 � j,C � �3 � j 7
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Evaluate these complex fractions:

(a) (b) 

Answer: (a) (b) 2.759l�287.6�.3.387l�5.615�,

B(15 � j7)(3 � j2)*

(4 � j6)*(3l70�)
R*6l30� � j5 � 3

�1 � j � 2e 
j45�

Practice Problem B.4

Euler’s Formula
Euler’s formula is an important result in complex variables. We derive
it from the series expansion of , and . We know that

(B.19)

Replacing x by gives

(B.20)

Also,

(B.21)

so that

(B.22)

Comparing Eqs. (B.20) and (B.22), we conclude that

(B.23)

This is known as Euler’s formula. The exponential form of represent-
ing a complex number as in Eq. (B.8) is based on Euler’s formula.
From Eq. (B.23), notice that

(B.24)

and that

Replacing by in Eq. (B.23) gives

(B.25)

Adding Eqs. (B.23) and (B.25) yields

(B.26)cos u �
1

2
 (e 

ju � e�ju)

e�ju �  cos u � j sin u

�uu

0e 
ju 0 � 2 cos2

 u � sin2
 u � 1

cos u � Re(e 
ju),  sin u � Im(e 

ju)

e 
ju � cos u � j sin u

 cos u � j sin u � 1 � ju �
u2

2!
� j 

u3

3!
�
u4

4!
� j
u5

5!
� p

 sin u � u �
u3

3!
�
u5

5!
�
u7

7!
� p

  cos u � 1 �
u2

2!
�
u4

4!
�
u6

6!
� p

e 
ju � 1 � ju �

u2

2!
� j 

u3

3!
�
u4

4!
� p

ju

ex � 1 � x �
x2

2!
�

x3

3!
�

x4

4!
� p

sin uex, cos u

B.3
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Practice Problem B.5If , find: (a) (3 roots), and (b) ln A.

Answer: (a) 
(b) (n � 0, 1, 2, . . . ).1.609 � j5.356 � j2n p

1.71l342.3�,1.71l222.3�,1.71l102.3�,

A1�3A � 3 � j4

Subtracting Eq. (B.25) from Eq. (B.23) yields

(B.27)

Useful Identities
The following identities are useful in dealing with complex numbers.
If then

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)
Im(e(a�j�)t) � Im(eate 

j�t) � eat sin �t

Re(e(a�j�)t) � Re(eate 
j�t) � eat cos �t

 e�jp�2 � �j

 e 
jp�2 � j

 e� j2p � 1

 e� jp � �1

 
1

j
� �j

(k � integer)

ln(re 
ju) � ln r � ln e 

ju � ln r � ju � j2k p

k � 0, 1, 2, p , n � 1

z1�n � (x � jy)1�n � r1�nlu�n � 2 p k�n

z 
n � (x � jy)n � r 

nlnu � r 
ne 

jnu � r 
n(cos nu � j sin nu)

2z � 2x � jy � 2re 
ju�2 � 2rlu�2

zz* � x2 � y2 � r2

z � x � jy � rlu,

sin u �
1

2j
 (e 

ju � e�ju)

Appendix B Complex Numbers A-15

Example B.5If , find: (a) (b) 

Solution:

(a) First, convert A to polar form:

Then

(b) Since 

A4 � r4l4u � 104l4 � 53.13� � 10,000l212.52�

A � 10l53.13�,

1A � 110l53.13��2 � 3.162l26.56�

r � 262 � 82 � 10,  u � tan�1
  

8

6
� 53.13�,  A � 10l53.13�

A4.1A,A � 6 � j8
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