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Appendix A
Simultaneous Equations 
and Matrix Inversion

In circuit analysis, we often encounter a set of simultaneous equations
having the form

(A.1)

where there are n unknown to be determined. Equation
(A.1) can be written in matrix form as

(A.2)

This matrix equation can be put in a compact form as

(A.3)
where

(A.4)

A is a square ( ) matrix while X and B are column matrices.
There are several methods for solving Eq. (A.1) or (A.3). These

include substitution, Gaussian elimination, Cramer’s rule, matrix inver-
sion, and numerical analysis.

Cramer’s Rule
In many cases, Cramer’s rule can be used to solve the simultaneous equa-
tions we encounter in circuit analysis. Cramer’s rule states that the solution
to Eq. (A.1) or (A.3) is

(A.5)
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where the ’s are the determinants given by

(A.6)

Notice that is the determinant of matrix A and is the determi-
nant of the matrix formed by replacing the kth column of A by B. It
is evident from Eq. (A.5) that Cramer’s rule applies only when 
When , the set of equations has no unique solution, because the
equations are linearly dependent.

The value of the determinant , for example, can be obtained by
expanding along the first row:

(A.7)

where the minor Mij is an determinant of
the matrix formed by striking out the ith row and jth column. The
value of may also be obtained by expanding along the first
column:

(A.8)

We now specifically develop the formulas for calculating the deter-
minants of and matrices, because of their frequent occur-
rence in this text. For a matrix,

(A.9)

For a matrix,

(A.10)
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Solve the simultaneous equations

Solution:
The given set of equations is cast in matrix form as

The determinants are evaluated as

 ¢2 � 2 4 17

�3 �21
2 � 4 � (�21) � 17 � (�3) � �33

 ¢1 � 2 17 �3

�21 5
2 � 17 � 5 � (�3)(�21) � 22

 ¢ � 2 4 �3

�3 5
2 � 4 � 5 � (�3)(�3) � 11

c 4 �3

�3 5
d  c x1

x2
d � c 17

�21
d

4x1 � 3x2 � 17,  �3x1 � 5x2 � �21

Example A.1

One may use other methods, such
as matrix inversion and elimination.
Only Cramer’s method is covered
here, because of its simplicity and
also because of the availability of
powerful calculators.

The solution of linear simultaneous equations by Cramer’s rule boils
down to finding

(A.12)

where is the determinant of matrix A and k is the determinant of
the matrix formed by replacing the k th column of A by B.

¢¢

xk �
¢k

¢
,  k � 1, 2, . . . , n

An alternative method of obtaining the determinant of a matrix
is by repeating the first two rows and multiplying the terms diagonally
as follows.

3 � 3
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In summary:
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a31 � a23 
a32 

a11� a11a22 
a33 � a21a32 

a13 � a31a12 
a23

You may not find much need to use Cramer’s method described in
this appendix, in view of the availability of calculators, computers, and
software packages such as MATLAB, which can be used easily to solve
a set of linear equations. But in case you need to solve the equations
by hand, the material covered in this appendix becomes useful. At any
rate, it is important to know the mathematical basis of those calcula-
tors and software packages.
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Determine , and for this set of simultaneous equations:

Solution:
In matrix form, the given set of equations becomes

We apply Eq. (A.11) to find the determinants. This requires that we
repeat the first two rows of the matrix. Thus,

£
25 �5 �20

�5 10 �4

�5 �4 9

§  £
x1

x2

x3

§ � £
50

0

0

§

 �5x1 � 4x2 � 9x3 � 0

 �5x1 � 10x2 � 4x3 � 0

 25x1 � 5x2 � 20x3 � 50

x3x1, x2 Example A.2

Find the solution to the following simultaneous equations:

Answer: x1 � 1.833, x2 � 1.5.

3x1 � x2 � 4,  �6x1 � 18x2 � 16

Practice Problem A.1

Hence,
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Similarly,
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Matrix Inversion
The linear system of equations in Eq. (A.3) can be solved by matrix
inversion. In the matrix equation , we may invert A to get X,
i.e.,

(A.13)

where is the inverse of A. Matrix inversion is needed in other
applications apart from using it to solve a set of equations.

By definition, the inverse of matrix A satisfies

(A.14)A�1A � AA�1 � I

A�1

X � A�1B

AX � B

A.2

Obtain the solution of this set of simultaneous equations:

Answer: .x1 � 3 � x3, x2 � 2

 �2x1 � 3x2 � 6x3 � 6

 �x1 � 6x2 � 3x3 � 0

 3x1 � x2 � 2x3 � 1

Practice Problem A.2
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A-4 Appendix A Simultaneous Equations and Matrix Inversion

 � 0 � 1000 � 0 � 2500 � 0 � 0 � 3500

�

�

�

 5 25 �5 50

�5 10 0

�5 �4 0

25 �5 50

�5 10 0

 5 
�

�

�

¢3 � 3 25 �5 50

�5 10 0

�5 �4 0

 3 �
Hence, we now find

 x3 �
¢2

¢
�

3500

125
� 28

 x2 �
¢2

¢
�

3250

125
� 26

 x1 �
¢1

¢
�

3700

125
� 29.6

ale80571_appA_A-A8.qxd  12/1/11  3:50 PM  Page A-4



where is an identity matrix. is given by

(A.15)

where is the adjoint of A and is the determinant of
A. The adjoint of A is the transpose of the cofactors of A. Suppose we
are given an matrix A as

(A.16)

The cofactors of A are defined as

(A.17)

where the cofactor is the product of and the determinant
of the submatrix is obtained by deleting the
ith row and jth column from A. For example, by deleting the first
row and the first column of A in Eq. (A.16), we obtain the cofactor

as

(A.18)

Once the cofactors are found, the adjoint of A is obtained as

(A.19)

where T denotes transpose.
In addition to using the cofactors to find the adjoint of A, they are

also used in finding the determinant of A which is given by

(A.20)

where i is any value from 1 to n. By substituting Eqs. (A.19) and (A.20)
into Eq. (A.15), we obtain the inverse of A as
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Use matrix inversion to solve the simultaneous equations

Solution:
We first express the two equations in matrix form as

or

where

The determinant of A is , so the inverse
of A is

A�1 �
1

16
 c3 �10

1 2
d

0A 0 � 2 � 3 � 10(�1) � 16

A � c 2 10

�1 3
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7
d
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c 2 10

�1 3
d  c x1
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7
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2x1 � 10x2 � 2,  �x1 � 3x2 � 7

Example A.3

its inverse is

(A.23)

For a matrix, if

(A.24)

we first obtain the cofactors as

(A.25)

where

(A.26)

The determinant of the matrix can be found using Eq. (A.11).
Here, we want to use Eq. (A.20), i.e.,

(A.27)

The idea can be extended , but we deal mainly with and
matrices in this book.3 � 3
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Determine , and for the following simultaneous equations using
matrix inversion.

Solution:
In matrix form, the equations become

or

where

We now find the cofactors

 c31 � 21 1

2 0
 2 � �2,  c32 � �

 
2 1 1

�1 0
 2 � �1,  c33 � 2 1 1

�1 2
2 � 3

 c21 � �
 
21 1

1 �1
 2 � 2,  c22 � 21 1

4 �1
 2 � �5,  c23 � � 21 1

4 1
2 � 3

 c11 � 22 0

1 �1
2 � �2,  c12 � �

 
2�1 0

4 �1
2 � �1,  c13 � 2�1 2

4 1
2 � �9

A � £
1 1 1

�1 2 0

4 1 �1
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x1
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 4x1 � x2 � x3 � �2

 �x1 � 2x2 � 9

 x1 � x2 � x3 � 5

x3x1, x2 Example A.4

Solve the following two equations by matrix inversion.

Answer: y1 � 3, y2 � 2.

2y1 � y2 � 4, y1 � 3y2 � 9

Practice Problem A.3

Hence,

i.e., and .x2 � 1x1 � �4

X � A�1B �
1

16
 c3 �10

1 2
d  c2

7
d �

1

16
 c�64

16
d � c�4

1
d
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Solve the following equations using matrix inversion.

Answer: y1 � 6, y2 � �2, y3 � 5.

 y1 � y2 � y3 � 3

 2y1 � 3y2 � y3 � 1

 y1 � y3 � 1

Practice Problem A.4

The adjoint of matrix A is

We can find the determinant of A using any row or column of A. Since
one element of the second row is 0, we can take advantage of this to
find the determinant as

Hence, the inverse of A is

i.e., .x1 � �1, x2 � 4, x3 � 2

 X � A�1B �
1

�12
 £

�2 2 �2

�1 �5 �1

�9 3 3

§  £
5

9

�2

§ � £
�1

4

2

§

 A�1 �
1

�12
 £

�2 2 �2

�1 �5 �1

�9 3 3

§

0A 0 � �1c21 � 2c22 � (0)c23 � �1(2) � 2(�5) � �12

adj A � £
�2 �1 �9

2 �5 3

�2 �1 3

§
T

� £
�2 2 �2

�1 �5 �1

�9 3 3

§
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