$2nd$ Order Transients -1

concepts

What happens with a second reactive component?

• Recall our prior example (during phasors intro)

How do we find a_0 , a_1 , a_2 ??

And what if we decreased the capacitance?

- Characteristic polynomial becomes

 s^2 + 2, 250 s + 1, 800, 000 = 0

$$
s = -1,125 \pm j731
$$

$$
A(t) = \frac{5}{9}V_1 + a_1e^{-1125t} \cos 731t + a_2e^{-1125t} \sin 731t
$$

Or added more reactive components circuit:

Define node voltage $v(t)$ and branch current $i(t)$ – KCL on the top node; solve for $i(t)$ – KVL on the right branch – Substitute in for $i(t)$ and its derivatives – Normalize: See website for the details

$$
\frac{d^3v}{dt^3} + 202.75\frac{d^2v}{dt^2} + 2550\frac{dv}{dt} + 2750v + 250000 = 0
$$

 s^3 + 202.75 s^2 + 2550 s + 2750 = 0

$$
v(t) = a_0 + a_1 e^{-1.19t} + a_2 e^{-12.2t} + a_3 e^{-189t}
$$

$$
v(t) = a_0 + a_1 e^{-1.19t}
$$

+
$$
a_2 e^{-20.8t} \cos 5.35t + a_3 e^{-20.8t} \sin 5.35t
$$

- Let $n =$ count of distinct L's or C's (beyond trivial series or parallel combining)
- The differential equation/characteristic polynomial is n^{th} order and its coefficients depend upon the circuit topology and the component values
- There are $n+1$ terms in the solution, the steady state value and a term for each root of the characteristic polynomial, each with an unknown constant
	- Individual exponentials (real roots)
	- Pairs of exponentials with cosine or sine (complex)
- We use the n initial conditions on the inductor currents and capacitor voltages to solve for the n unknown coefficients

- Let $n =$ count of distinct L's or C's (beyond trivial series or parallel combining)
- The differential equation/characteristic polynomial is n^{th} order and its coefficients depend upon the circuit topology and the component values
- There are $n+1$ terms in the solution, the steady state value and a term for each root of the characteristic polynomial, each with an unknown constant
	- Individual exponentials (real roots)
	- Pairs of exponentials with cosine or sine (complex)
- We use the n initial conditions on the inductor currents and capacitor voltages to solve for the n unknown coefficients

- Let $n =$ count of distinct L's or C's (beyond trivial series or parallel combining)
- The differential equation/characteristic polynomial is n^{th} order and its coefficients depend upon the circuit topology and the component values
- There are $n+1$ terms in the solution, the steady state value and a term for each root of the characteristic polynomial, each with an unknown constant
	- Individual exponentials (real roots)
	- Pairs of exponentials with cosine or sine (complex)
- We use the n initial conditions on the inductor currents and capacitor voltages to solve for the n unknown coefficients

- Let $n =$ count of distinct L's or C's (beyond trivial series or parallel combining)
- The differential equation/characteristic polynomial is n^{th} order and its coefficients depend upon the circuit topology and the component values
- There are $n+1$ terms in the solution, the steady state value and a term for each root of the characteristic polynomial, each with an unknown constant
	- Individual exponentials (real roots)
	- Pairs of exponentials with cosine or sine (complex)
- We use the n initial conditions on the inductor currents and capacitor voltages to solve for the n unknown coefficients

Focus – 2 "simple" RLC circuits

Parallel:

 \bullet KCL : $I_s +$ \mathcal{V} $\frac{1}{R}$ + 1 $\frac{1}{L}$ \boldsymbol{t} $v(s)ds + C$ $d\mathcal{v}$ dt

$$
\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = 0
$$

Series:

 $= 0$ $-V_s + Ri + L$ KVL : di $\frac{du}{dt} +$ 1 $\frac{1}{C}$ \boldsymbol{t} $i(s)ds = 0$

$$
\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{1}{LC}i = 0
$$

• Generally,
$$
\frac{d^2x}{dt^2} + 2\alpha \frac{dx}{dt} + \omega_0^2 x = 0
$$

$$
\alpha = \begin{cases} \frac{R}{2L} & ; \text{ series} \\ \frac{1}{2RC} & ; \text{ parallel} \end{cases} \qquad \omega_0^2 = \frac{1}{LC}
$$

Standard notation

• For $s^2 + 2\alpha s + \omega_0^2 = 0$ the homogeneous solution is

$$
x(t) = Ae^{st}
$$

with two values for s :

$$
s = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}
$$

• Two negative real roots (s_1, s_2) : (over-damped)

$$
x(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t} + x_{\infty}
$$

• Two equal roots (s) : (critically damped)

$$
x(t) = D_1 t e^{st} + D_2 e^{st} + x_{\infty}
$$

• Complex conjugate roots $(-\alpha \pm j\omega_d)$: (under-damped)

$$
x(t) = B_1 e^{-\alpha t} \cos \omega_d t + B_2 e^{-\alpha t} \sin \omega_d t + x_{\infty}
$$

The "time" constant

• 1st order solution

$$
x(t) = A e^{-t/\tau} + x(\infty)
$$

– Transient gone in about 4τ

• 2nd order solution

 $x(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t} + x(\infty)$ $x(t) = B_1 e^{-\alpha t} \cos \omega_d t + B_2 e^{-\alpha t} \sin \omega_d t + x(\infty)$ – duration depends upon S_1 , S_2 or α

Find the form of the capacitor voltage $v(t)$ assuming R = 100 Ω

Since series, the characteristic equation is

$$
s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0
$$

or

$$
s^{2} + 20,000 s + 2 \times 10^{7} = 0
$$

over
$$
s = -18900, -1060
$$

so

$$
v(t) = A_{1}e^{-18,900t} + A_{2}e^{-1060t} + v_{\infty}
$$

• What is R is reduced to 5 Ω ?

$$
s^{2} + 1000 s + 2 \times 10^{7} = 0
$$

or

$$
s = -500 \pm j \ 4440
$$

so

$$
v(t) = B_{1}e^{-500t} \cos 4440t + B_{2}e^{-500t} \sin 4440t + v_{\infty}
$$

• Blue: $R = 100 \Omega$, overdamped

• Goals for the next few days – find the **details** of these solution, including evaluation of unknown constants

Practice problem: a parallel RLC circuit consists of a 5000 Ω resistor, a 1.25 H inductor, and an 8 nF capacitor.

- Find the roots of the characteristic equation
- Is the response over-damped or under-damped?
- How would you need to change the resistance to get the other form of damping?

 $-20,000, -50$,; over, $R > 6250 \Omega$

Practice problem: a series RLC circuit consists of the same 5000 Ω resistor, 1.25 H inductor, and 8 nF capacitor.

- Find the roots of the characteristic equation
- Is the response over-damped or under-damped?
- How would you need to change the resistance to get the other form of damping?

