1st Order Transients – 4

other circuit variables

Question – How do we find v(t) ?

 Method 1:
 Propagate *i*(*t*) from earlier class
 KVL:

$$v(t) = 3 i(t) + 2 \frac{di(t)}{dt}$$

= 3(0.22 e^{-2.75 t} + 1.36)
+2(-2.75)(0.22 e^{-2.75 t})

 $= -0.55 e^{-2.75 t} + 4.09$ volts

Method 2
 Direct solution

$$v(t) = (v_0 - v_\infty) e^{-t/\tau} + v_\infty$$

 $\tau =$

$$\frac{1}{2.75} \sec \qquad \qquad \text{Same time constant !!}$$

$$v_{\infty} = 15 \frac{10||10||3}{10||10||3 + 5} = 4.09$$

4

Voltage division (same idea)

- How do we find v_0 ?
 - Cannot use voltage before the switch (IC) since it need not be continuous
 - Can exploit the fact that

 $i_L(0) = 1.58$ amps

Node analysis:

$$\frac{v_0 - 15}{5} + \frac{v_0}{10} + \frac{v_0}{10} + 1.58 = 0$$
$$v_0 = 3.55 \text{ volts}$$

$$v(t) = (v_0 - v_\infty) e^{-\frac{R}{L}t} + v_\infty$$

= (3.55 - 4.09) $e^{-2.75 t} + 4.09$
= -0.55 $e^{-2.75 t} + 4.09$ volts

• Also, for t < 0, $v(t) = \frac{90}{13} = 4.74$ volts, so we see a "jump" at t = 0

Example: find i(t)

Form: i(t) =

Time constant: $\tau = RC =$

Final value: $i_{\infty} =$

Initial value: use $v_c(0)$

Example: same circuit, different variable

$$R = 2 \Omega$$

$$i(\infty) = 0 A$$

$$v_C(0) = 10 V$$

$$i(0) = -3 A$$

Practice problem: find $v_o(t)$

 $R = 16.7 \Omega$ $v(\infty) = 4 V$ $i_L(0) = 3.2A$ v(0) = -32 V

Practice problem: find $i_o(t)$

 $R = 2 k\Omega$ $i(\infty) = 0 V$ $v_C(0) = 118.8 V$ i(0) = 39.6 mA

Practice problem: find $v_o(t)$

 $R = 24 \Omega$ $\nu(\infty) = 0 V$ $i_L(0) = 2A$ $\nu(0) = -6 V$

 $-60e^{-80,000t}V$

Practice problem: find $v_o(t)$

