1st Order Transients – 2

general solution

First Order RC Case

• Thevenin/Norton equivalents

• Solution
$$v(t) = (v_0 - v_\infty) e^{-t/RC} + v_\infty$$

Example: switch changes $a \rightarrow b$ at t = 0

Example: switch changes $b \rightarrow a$ at t = 0

First Order RL Case

• Loop KVL equation:
$$\frac{di(t)}{dt} + \frac{R}{L}i(t) = \frac{1}{R}V_S$$

• Solution: $i(t) = (i_0 - i_\infty) e^{-\frac{R}{L}t} + i_\infty$

Example: switch opens at t = 0

Example: switch closes at t = 0

General Result – 1st Order

• Inductor current or capacitor voltage, x(t) for t > 0

$$x(t) = (\mathbf{x_0} - \mathbf{x_\infty}) e^{-t/\tau} + \mathbf{x_\infty}$$

- Final and initial values, x_{∞} and x_0 :
 - From a DC analysis based on "open" or "short" models for C and L
 - Initial value exploits the continuity of capacitor voltages and inductor currents at t = 0

$$x(t) = (x_0 - x_\infty) e^{-t/\tau} + x_\infty$$

– Time constant τ (= L/R or RC)

– Why this form?

What if the Circuit is more Complex?

• Use the Thevenin equivalent circuit seen by L or C – Time constant $\tau = L/R_{Th}$ or $R_{Th}C$

$$i(t) = (i_0 - i_\infty) e^{-t/\tau} + i_\infty$$

• Need: τ , i_{∞} , and i_0

Step 1 – time constant $\tau = \frac{L}{R_{Th}}$

Step 2 – final value i_{∞} ; as $t \to \infty$

$$\frac{v-15}{5} + \frac{v}{10} + \frac{v}{3} + \frac{v}{10} = 0 \implies v = \frac{45}{11}$$

$$i_{\infty} = \frac{v}{3} = \frac{15}{11} = 1.36$$
 amps

Step 3 – initial value i_0

$$\frac{v-15}{5} + \frac{v}{10} + \frac{v}{3} = 0 \implies v = \frac{90}{19}$$

$$i_0 = \frac{v}{3} = \frac{30}{19} = 1.58$$
 amps

Combining

$$i(t) = (i_0 - i_\infty) e^{-2.75 t} + i_\infty$$

 $= 0.22 e^{-2.75 t} + 1.36$ amps

Practice problem: find the inductor current

 $i(0^+) = 0 A$ $i(\infty) = 20 A$ $R_{Th} = 0.0990 \Omega$

Practice problem: find the capacitor voltage

$$v(0^+) = 100 V$$
$$v(\infty) = 0 V$$
$$R_{Th} = 80 k\Omega$$