Phasors – 1

introducing L & C

So Far – Resistive DC Circuits

- Circuit variables
 - Voltage, current, and power
- 2-terminal components
 - Passive sign convention
 - Independent and dependent sources
 - Resistors

- Basic tools:
 - KVL, KCL, Ohm's Law
 - Extensions:
 - Series/parallel R
 - Voltage/current division
- Powerful analysis tool
 Node method

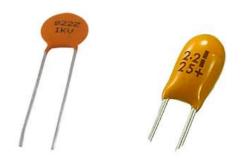
What's Coming

- Two new devices :
 - Inductors (L)
 - Capacitors (C)

 Time varying voltages and currents

- Steady-state analysis:
 - Assumes all voltages and currents are sinusoidal
 - Direct extension of methods to date using complex numbers
- Transient analysis:
 - Voltages and currents
 that disappear with time
 - Exponential forms

Inductor

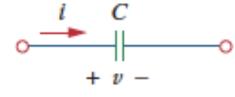


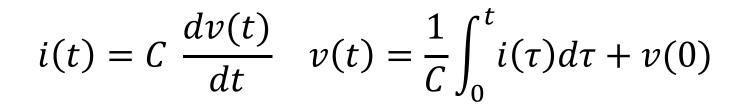
- L (unit is Henries, H)
- V-I rules:

$$i L$$

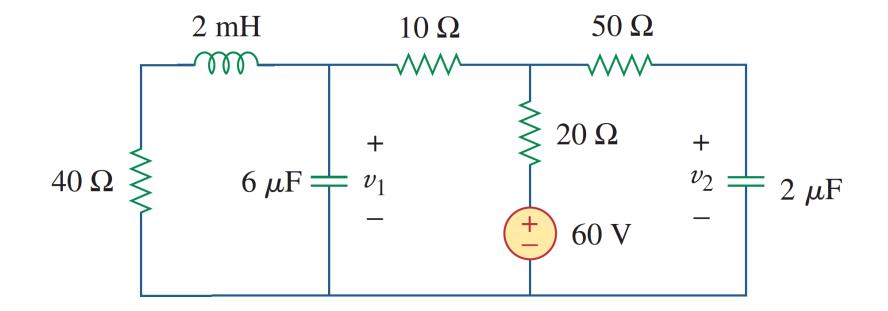
 $m_{+\nu}$

$$v(t) = L \frac{di(t)}{dt} \quad i(t) = \frac{1}{L} \int_0^t v(\tau) d\tau + i(0)$$


- Notes:
 - If i(t) jumps then v(t) would be infinite $\rightarrow i(t)$ cannot jump, it is continuous
 - If i(t) = a constant then $v(t) = 0 \rightarrow$ inductor acts like a short circuit

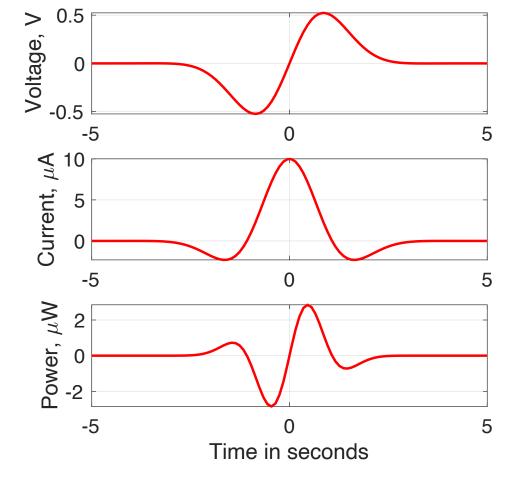


Capacitor


- C (unit is Farads, F)
- V-I rules:

- Notes:
 - If v(t) jumps then i(t) would be infinite $\rightarrow v(t)$ cannot jump, it is continuous
 - If v(t) a constant then $i(t) = 0 \rightarrow$ inductor acts like an open circuit

Example: Find the voltages v_1 and v_2 for this circuit assuming constant voltage/current conditions.



$$v_1 = \frac{40}{70}60 = 34.3 V, v_2 = \frac{50}{70}60 = 42.9 V$$

Power/Energy for L & C

- Power p(t) = v(t) i(t)
- Example: 10 μF capacitor

 $i(t) = C \; \frac{d\nu(t)}{dt}$

$$w(t) = \int p(s) \, ds = \int v(s) \, i(s) \, ds$$

– Inductor:

$$w(t) = \int L \frac{di(s)}{ds} \ i(s) \ ds = L \int i(s) \ di(s) = \frac{L \ i^2(t)}{2}$$

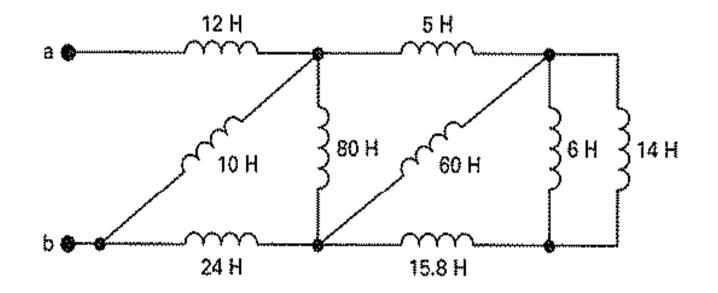
$$w(t) = \int v(s) \ C \ \frac{dv(s)}{ds} \ ds = C \int v(s) \ dv(s) = \frac{C \ v^2(t)}{2}$$

Series/Parallel Combining

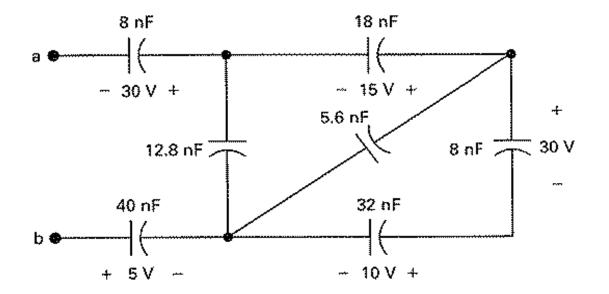
• Inductors – just like resistors

$$L_{parallel} = \frac{L_1 L_2}{L_1 + L_2}$$

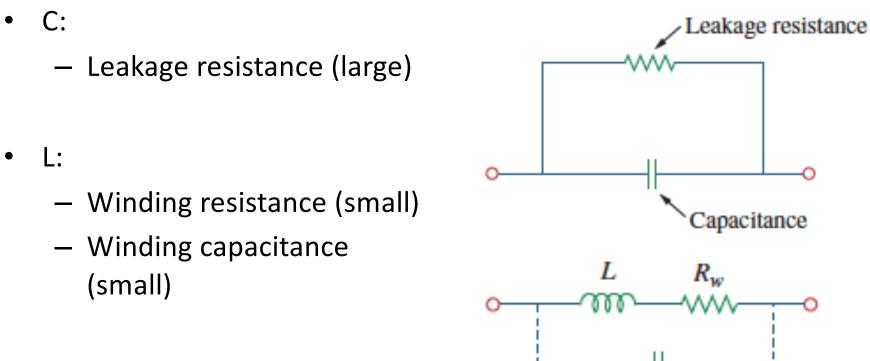
$$\frac{3}{2}L_1$$
 $\frac{3}{2}L_2$


.

• Capacitors – just the opposite of resistors


$$C_{series} = \frac{C_1 C_2}{C_1 + C_2} \qquad \begin{array}{cccc} C_1 & C_2 \\ \hline \\ \hline \\ \end{array}$$

$$C_{parallel} = C_1 + C_2 \qquad \begin{array}{ccccc} C_1 & C_2 \\ \hline \\ \hline \\ \end{array}$$

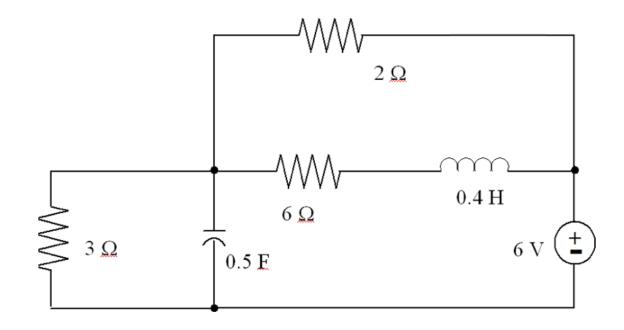

Example: find the equivalent inductance

Example: find the equivalent capacitance

More Realistic Device Models

• Will consider more in ELE 215

Practice problem: If a 10 μ *F* capacitor's voltage is $v(t) = 5(1 - e^{-10t})$ V consider it's power as a function of time. When is the power a maximum? What is that maximum? How much energy has been stored in the capacitor at this point?


 $0.693 \ sec, 625 \ \mu W, 12.5 \ \mu J$

Practice problem: A voltage of $20(1 - e^{-500t})$ volts appears across the parallel combination of a 100 μF capacitor and a 10 ohm resistor. What is the total power absorbed the the parallel combination as a function of time?

 $40 - 60e^{500t} + 20e^{-1000t} W$

Practice problem: Find the inductor current and capacitor voltage assuming constant voltage/current conditions.

 $\frac{1}{3}$ A, 4 V

