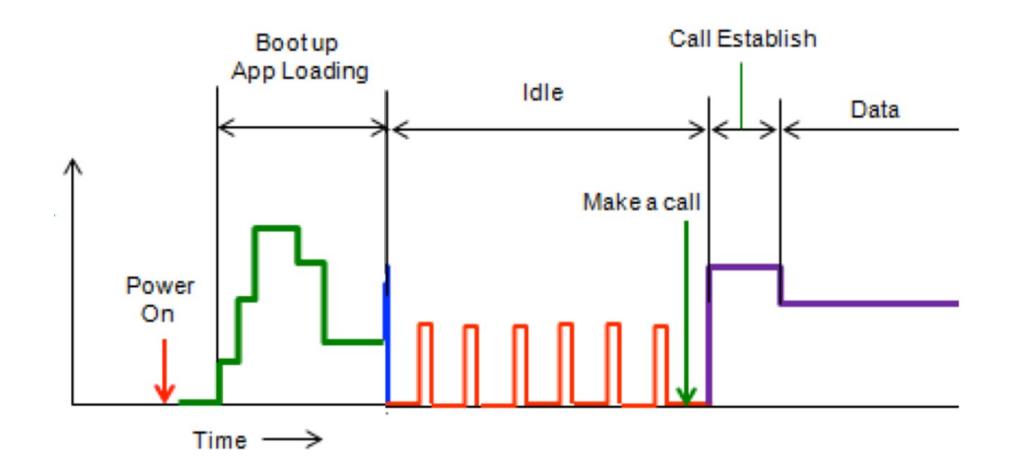
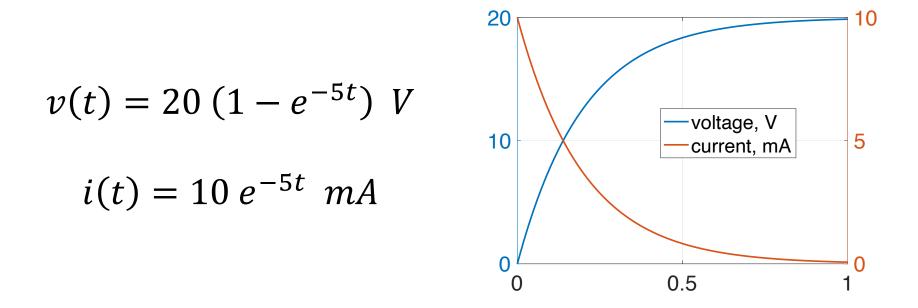
Basics – 2


time variation; sources; resistors

Circuit Variables

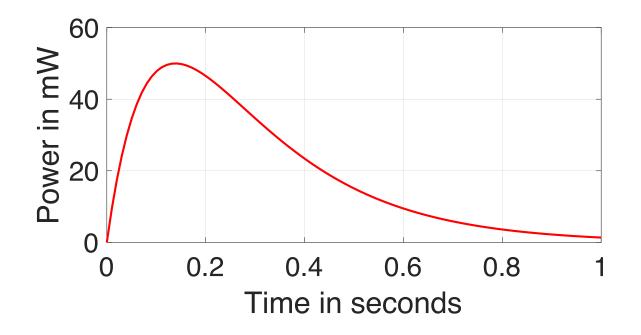
Current	i(t)	amperes	directional
Voltage	v(t)	volts	directional
Power	p(t) = v(t)i(t)	watts	
Energy	E(t)	joules	

• Typically, these are time varying


• As an example – smart phone power usage

Example: I currently have a 3-year-old iMac on my desk with power consumption of 63 watts (idle) to 240 watts (active computing). A new iMac is better vis-à-vis power with levels of 43-84 Watts, respectively. Can I argue the \$1,600 price tag based upon the obvious energy savings?

- Answer:
 - Assumptions:
 - Low/high power usage for a typical day is 20/4
 - Electricity rate of 18 cents/kWh
 - Extra power over a year:
 - High power: 365 * 4 * (240 84) = 228 kWh
 - Low power: 365 * 20 * (63 43) = 146 kWh
 - Savings per year = (228 + 146) * 0.18 = \$67

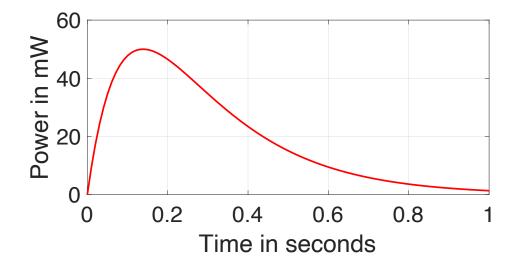

Example: The voltage and current at the terminals of a two-terminal circuit device for t > 0 seconds are

- At what time is the power being delivered to the device a maximum?
- What is that maximum?

- Answer:
 - First, use the fact that power is the product of voltage and current

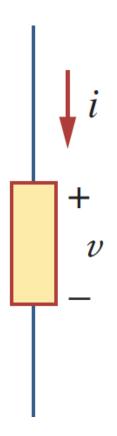
$$p(t) = v(t) * i(t)$$

= 200 ($e^{-5t} - e^{-10t}$) mW

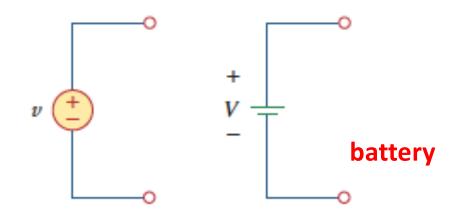

– Calculus gets us the extreme point:

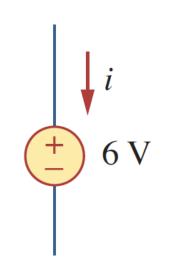
$$\frac{dp(t)}{dt} = 200 \left(-5e^{-5t} + 10 \ e^{-10t}\right)$$

• This derivative is zero when

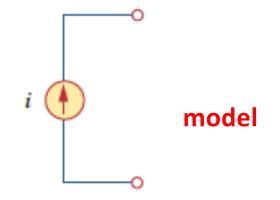

$$t = \frac{\ln 2}{5} = 0.139$$
 sec.

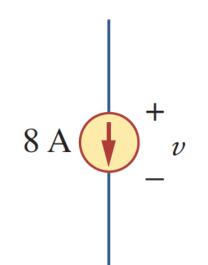
– The peak is
$$p\left(\frac{\ln 2}{5}\right) = 50 \text{ mW}$$

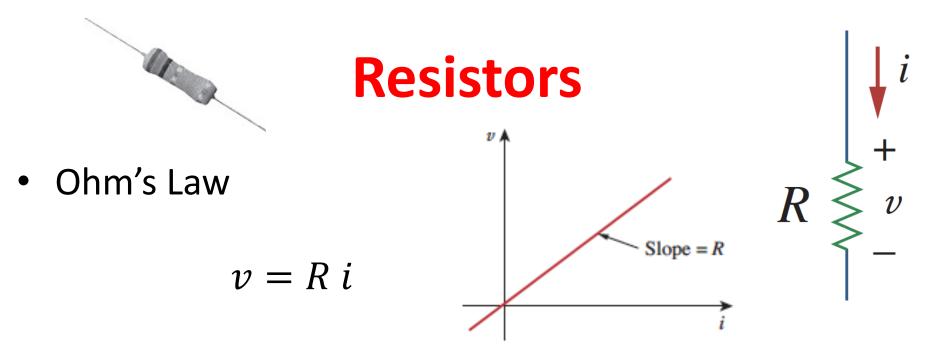

2 Terminal Devices


- Typical components for ELE 212/215:
 - Voltage and current sources
 - Resistors, inductors, capacitors
- Each has its own v, i characteristic
- Passive sign convention
 - Power p = v i
 - p > 0 "absorbed"
 - p < 0 "delivered"

Sources


- Voltage source:
 - Fixed voltage
 - Any current necessary
 - Example:




Power p = v i can be positive or negative

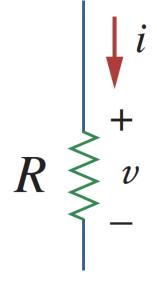
- Current source:
 - Fixed current
 - Any voltage necessary
 - Example:

Power p = v i can be positive or negative

- Unit is ohms (Ω , k Ω , M Ω)
 - Also written as $i = \frac{v}{R} = v G$ - G = conductance (mhos, Siemens, \mho)
- Power is $p = v \ i = R \ i^2 = \frac{v^2}{R} = v^2 G$ – Always positive; power is always absorbed

Example: If the current through a 60 Ω resistor is 0.3 A, what is the voltage across it? How much power is it absorbing?

Issue of significant figures


• Consider computing the resistance using Ohm's Law:

v = 3.07 volts

i = 29.0 milliamps

then

$$R = \frac{3.07 \pm 0.01}{0.0290 \pm 0.0001} \Omega$$

$$\frac{3.07}{0.0290} = 105.862068 \ \Omega$$

$$R \ge \frac{3.06}{0.0291} = 105.15 \qquad R \le \frac{3.08}{0.0289} = 106.57$$

Practice problem: I'm thinking of buying an electric car. How much would I save by having a home charger versus using the publicly available charging stations?

- Assumptions:
 - Average 330 miles from 82 kWh (Tesla model 3)
 - Drive 15,000 miles per year
 - Electricity rate of 18 cents/kWh at home vs 42 cents/kWh at the chargers

Practice problem: If the voltage across a 33 k Ω resistor is 14 volts, what is the current through the resistor?

Practice problem: If a 150 k Ω resistor has a power rating (i.e. maximum power allowed) of 1/8 watt, what is the maximum voltage that can be applied across the resistor?

Practice problem: If the voltage across a 56 Ω resistor is 200 mV, what is the current through the resistor?

Practice problem: If a 100 Ω resistor is absorbing 120 mW, what is the current through the resistor?