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Take-home exam. Open book/notes. You may use library and Internet 
resources. Please cite all papers/resources that you use. You may not 
discuss these problems with anyone else other than the professors who 
made up the questions. Please contact Ying Sun first if you need 
clarification on any of the problems. 
 
 

Electrophysiology 
Prof. Robert Hill 

 
1. What do you make of "Hodgkin and Huxley model - still standing?" 

(Nature 4 January 2007,  p. v). 
 
2. Write down and look at the GOLDMAN EQUATION. (Goldman, 1943; 

Hodgkin and Katz, 1949)  Is it a problem that there are sharp 
constraints in the derivation of the GOLDMAN EQUATION? 
Summarize 5 constraints which may lead one to question 
applicability of the GOLDMAN EQUATION to living membranes. 

 
3. Discuss and diagram experimental rigs for determining the ionic 

basis of action potentials. 
 

a. With an axial wire in a squid axon. 
b. By applying a sucrose gap to a squid axon or another tissue. 
c. By sharp microelectrode recording. 
d. By use of patch clamp measurements in the whole-cell current 

clamp mode. 
 
4. Invent and discuss your own comprehensive question in the area of 

electrophysiology. 
 
 
 

Signals and Systems 
Prof. Leland Jackson 

 
See questions on the next two pages. 
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Biomedical Engineering and Nonlinear Dynamics 

Prof. Ying Sun 
 
 
1. Define and compare (strict) stationarity and wide-sense stationarity. 
 
2. Identity at least three different methods reported in the literature for 

testing the stationarity (either strict or wide-sense) of data. 
 
3. Name three most useful methods, in your opinion, for analyzing the 

nonlinear dynamics of a one-dimensional data segment. Describe how 
these methods are implemented. Comment on the strength and 
weakness of these methods. 

 
4. Identify three significant papers that are concerned with the 

applications of nonlinear dynamics to biomedical or biological data. 
Briefly summarize each paper. Comment on why you think each study 
is significant. 
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Electrophysiology 
Prof. Robert Hill 
 
1. What do you make of "Hodgkin and Huxley model - still standing?" 
(Nature 4 January 2007, p. v). 
 
The article outlines a difference of interpretation of the waveform associated with 

action potentials (AP) generated by cortical pyramidal cells in the cat.  Of critical 

note is the location of origin of action potentials in the cortical pyramidal cells.  

Briefly, the action potential is formed in the axon initial segment (AIS) and not the 

cell body.  How this affects the generation and appearance of APs in the cell 

body and dendrite, as well as their specific form, is the subject of debate in the 

article.  There are two main points of contention: 1) there is a rapid rate of rise 

(kink), in the action potential onset 2) there is high threshold variability [1,2].  The 

existence of neither the kink nor the variability is under debate, but rather it is the 

explanations proposed for their existence.  Naundorf, et al, propose an 

explanation due to a yet undiscovered intercooperativity of sodium channels in 

the cell membrane.  McCormick, et al, propose that the observations in the 

waveforms are simply a result of current back propagation from the AIS to the 

soma.  The initiating paper in this contention, written by Naundorf, et al, contains 

insufficient explanation in the Methods section to ascertain the location of the 

recording site [3].  That is, the section mentions both sharp microelectrode and 

patch clamp recording methodologies, however it fails to mention whether the 

recordings were done at the AIS.  Going on the presumption that recordings were 

made at the soma and not the AIS, as the Methods section suggests, it is likely 

that Naundorf failed to take into account the effects of back propagation.  The 

axon and the soma certainly do not share the same membrane potential so no 



conclusions about the threshold variability in the AIS while recording from the cell 

body should be made.  Further, by taking into account the reduction in 

membrane potential as the current back propagates from the AIS to the soma, 

the rapid onset of the action potential seems to be substantiated and predicted 

by the Hodgkin-Huxley (HH) model [4].  Mathematically, the reduction in the 

membrane potential as the AP (current) back propagates from the AIS to the 

soma causes a floor effect (the membrane potential being the dependent 

variable) which allows the derivative dV
dt

⎛ ⎞
⎜ ⎟
⎝ ⎠

 to climb quickly, resulting in the rapid 

onset waveform seen in the papers by both Naundorf and McCormick. 

4 3( ) ( ) ( )        (1)

(1 )                                                                                (2)

(1 )                      

M K K Na Na leakage leakage

n n

m m

dVI C g n V E g m V E g V E
dt

dn n n
dt
dm m m
dt

α β

α β

= + − + − + −

= − −

= − −

10 1
10

                                                      (3)

(1 )                                                                                (4)

0.01( 10)                      

h h

n V

dh h h
dt

V

e

α β

α +
−

= − −

+
=

80

25 1
10

                                                             (5)

0.125                                                                                          (6)
0.1( 25)          

V

n

m V

e
V

e

β

α +
−

=
+

=

18

20

                                                                           (7)

4                                                                                                 (8)

0.07   

V

m
V

h

e

e

β

α

=

=

30 1
10

                                                                                         (9)
1                                                                                            (1n V

e
β +

+
= 0)

 



I believe McCormick, et al, have established that the observations can easily be 

attributed to known physiological models and predicted by the HH model and 

therefore, the HH model IS still standing.   

 
[1]  McCormick, D. A. Shu, Y, and Yu, Y.  Hodgkin and Huxley model – still 
standing?  Nature (2007) 445, E1-E2 
 
[2]  Naundorf, et al. reply.  Nature (2007) 445, E2-E3. 
 
[3]  Naundorf, B., Wolf, F., Volgushev, M.  Unique features of action potential 
initiation in cortical neurons.  Nature (2006) 440, 1060-1063. 
 
[4]  Hodgkin, A. L., and Huxley, A. F.  A quantitative description of membrane 
current and its application to conduction and excitation in nerve.  J. Physiol. 
(1952) 117, 500-544. 
 
    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Write down and look at the GOLDMAN EQUATION. (Goldman, 1943; 
Hodgkin and Katz, 1949) Is it a problem that there are sharp constraints in 
the derivation of the GOLDMAN EQUATION? Summarize 5 constraints 
which may lead one to question applicability of the GOLDMAN EQUATION 
to living membranes. 
 

If we limit our discussion to sodium, potassium, and chloride ions, the Goldman 

equation is  

( , , )

[ ] [ ] [ ]
ln

[ ] [ ] [ ]
out out inNa K Cl

Na K Cl
in in outNa K Cl

P Na P K P ClRTE
F P Na P K P Cl

+ + −

+ + −

+ + −

+ + −

+ + −

⎛ ⎞+ +
= ⎜ ⎟⎜ ⎟+ +⎝ ⎠

 

where E is the membrane potential, R is the ideal gas constant, T is the 

temperature (Kelvins), F is Faraday’s constant, P is permeability (measured in 

centimeters per second and defined as /u RT aFβ where u is the mobility of the 

ions in the membrane, β is the partition coefficient between the membrane and 

the solution, a is the thickness of the membrane, and R, T, and F are previously 

defined), and the brackets define concentration either in or out of the cell, as 

indicated [1]. 

Often, the Goldman equation is referred to as the Goldman-Hodgkin-Katz 

equation, or GHK equation.  The Goldman equation first appears as a variation of 

the above form in 2 and was later used by Hodgkin and Katz in 3.  The fact that 

the equation supercedes Hodgkin and Katz’ work is not a trivial one, since much 

of the substantiation for their work is based on the relationships established in 

the Goldman equation. 

In Goldman’s original work on the subject he wrote “Obviously radical 

simplifications will have to be adopted thereby vitiating the results somewhat. 

Nevertheless rough agreement may be hoped for in some cases and such an 



analysis may also help in clarifying the influence of some of the controlling 

factors.”  It is clear that Goldman was well aware that there were constraints that 

needed to be placed on the equation and placed a level of caution on its use. 

 

The Goldman equation is an equation used to calculate the potential across the 

cell membrane that accounts for the ionic concentrations inside and outside the 

cell.  Assumptions are made in using the Goldman equation that influence the 

final result, most notably the way in which ions diffuse across the membrane.  

The problem in using such assumptions (constraints) is that the final result yields 

an approximation based on the assumptions.  If the assumptions are grossly 

inaccurate, the equation will yield inaccurate results.  Of course this is a problem, 

but the assumptions are simple and reasonable, and attempt to model cellular 

responses.  Like any model, it is not meant to provide an absolute quantification, 

but rather a reasonable approximation to what is observed naturally.  The 

equation assumes that ions in the membrane diffuse in a similar manner to those 

in free solution [2,3].  This, of course, is not true given the mechanisms of ion 

transport and the gating of ion channels and pores in general.  This gives rise to 

another assumption that the electric field (as described by the Nernst-Planck 

equation) is equally distributed across the membrane [4].  This would be a 

reasonable assumption if the only contribution to the electric field was provided 

by the ions, and only the ions.  As the number of ions gets very large, the 

probability that they are equally diffuse approaches one (they share the same 

probability distribution function).  However, it is well known that there are a 

number of structures embedded in the cell which are electrogenic and those 



structures are not uniformly distributed [1].  Another difficulty when attempting to 

apply the equation is that the equation assumes the cellular membrane is 

homogenous, i.e. that it is equally probable throughout the membrane that the 

rate of diffusion is the same, regardless of the location.  It is clear to see why this 

assumption is necessary.  In order for the equation to hold, the concentration of 

ions at the surface of the inside of the cell must be proportional to the 

concentration of ions at the surface outside the cell.  This is a direct 

consequence of the assumption that the equation is applied under steady state 

conditions, such that the change in potential over the distance of the membrane 

is constant (linear) [2].  And here is the crux of the issue.  The equation attempts 

to apply equilibrium (steady state) calculations to a nonequilibrium process [3].  

These five constraints (ions in cells behave as ions in free solution, the electric 

field is equally distributed, the cell membrane is homogenous, the concentration 

at the inside boundary of the cell is proportional to the concentration at the 

outside boundary, and that the change in membrane potential across the 

distance of the cell is a constant) must be observed when applying the equation.  

More importantly, the equation should be viewed as a model of the 

electrophysiological properties of the cell, not an absolute description. 

 

[1]  Aidley, D. J.  The physiology of excitable cells, 3rd edition.  Cambridge 
University Press, Cambridge, UK, 1989.  pp 23-25. 
 
[2]  Goldman, D. E.  Potential, impedance, and rectification in membranes.  J. 
gen. physiol.  (1943)  27, 37-60. 
 
[3]  Hodgkin, A. L. and Katz, B.  The effect of sodium ions on the electrical 
activity of the giant axon of the squid.  J. physiol. (1949) 108, 37-77. 
 



[4]  Hille, B.  Ion Channels of Excitable Membranes, 3rd edition.  Sinauer 
Associates, Inc, Sunderland, MA, 2001.  pp 445-449. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Discuss and diagram experimental rigs for determining the ionic basis of 
action potentials. 
 
a. With an axial wire in a squid axon. 
b. By applying a sucrose gap to a squid axon or another tissue. 
c. By sharp microelectrode recording. 
d. By use of patch clamp measurements in the whole-cell current clamp 
mode. 
 

Before a discussion of specific experimental rigs for determining ionic 

contributions to action potential generation, it is prudent to look at the techniques 

common all experimental rigs.  First and foremost, a primer on the voltage clamp 

technique is in order.  The voltage clamp, developed by George Marmount and 

Kenneth Cole (independently) in 1949, has been transformed many times over 

since its inception, but the fundamental principal remains:  undesired capacitive 

currents only flow when the membrane potential is changing and therefore the 

membrane potential must be held to some fixed value via a network of feedback 

amplifiers in order to isolate the ionic currents responsible for the action potential.   
An internal (inside the cell) electrode measures the membrane potential versus 

the extracellular voltage, usually fixed to ground.  The electrode is connected to 

an amplifier, such as the Axon Instruments Gene Clamp 500, and a reference 

voltage (clamped voltage) is programmed to the amplifier.  A feedback circuit 

(comparator op amp) compares the measured potential to the reference voltage 

and amplifies the difference, or error, and passes current into the cell through 

another electrode in order to minimize the error. 

 

 

 



 

 

In the above diagram, the membrane is clamped to 0 volts.  The membrane is 

then stepped through a series of voltages through hyperpolarizing (negative) and 

depolarizing (positive) currents, resulting in changes to the membrane potential.  

Since the cell membrane is clamped, there are no capacitive currents flowing 

across the cell.  The ionic responses seen above correspond to the cell adjusting 

its ionic concentration.  Downward deflections are representative of current 

moving into the cell (or membrane) and upward defections represent current 

moving out of the cell [1].   







Two Microelectrode Rig 
 

 
 
 
A Faraday cage surrounds the entire microelectrode recording to shield the 

experiment from the 60Hz noise generated by the ambient light and recording 

equipment.   

 

See Axon Rig for Voltage Clamp details. 





A note regarding Silver/SilverChoride wire electrodes.  If electrons are flowing 

(i.e., there is current) from copper (Cu) to a solution, there is an inherently difficult 

exchange of electrons [2].  We use chloride coated silver (Ag) wire to smooth the 

transition.  Under current, AgCl is stripped of its Cl-, and the Cl- ions enter 

solution, typically 3M KCl. If the current reverses direction, Ag atoms in the AgCl 

wire give up their electrons and combine with Cl- in the solution to make 

insoluble AgCl. This is, therefore, a reversible electrode, i.e., current can flow in 

both directions.  This is a critical point in the ability to interface standard electrical 

devices in a wet environment. 

 

 

[1]  Hille, B.  Ion Channels of Excitable Membranes, 3rd edition.  Sinauer 
Associates, Inc, Sunderland, MA, 2001.  pp 445-449. 
 
[2]  The Axon CNS Guide.  Molecular Devices, 2006. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. Invent and discuss your own comprehensive question in the area of 
electrophysiology. 
 

On December 16, 1997, Japanese children had settled in to watch the highest 

rated cartoon in that nation’s history.  This particular episode of Pokemon 

featured a bomb that exploded first in white, then in red, and repeated at a rate of 

12 times per second.  Thousands of children across the country became sick, at 

least 600 were taken to area hospitals, and one child fell unconscious for over 

half an hour [1].  The condition is known as photosensitive epilepsy and it is 

believed, though not known, to be caused by the firing of neurons in lockstep, 

induced by the strobe of intense light at specific frequencies.  The question is 

“What are the dynamics of cellular interaction that allow a cell, or group of cells, 

to assume a specific pattern and synchronize?”  It is well known that epilepsy is a 

disease of dynamics and not of structure [2].  That is, there are usually no visible 

physical defects in brain architecture that cause the electrical activity to transition 

from normal to ictal.  There are instances, however, when a region of the brain is 

identified as the epileptic focus.  When that portion of the brain is removed, it 

often results in considerable relief of epileptic episodes for a patient.  What is 

fascinating about epilepsy is that even in the same patient, the epileptic event is 

ectopic, originating in areas of the brain not associated with the epileptic focus.  

This indicates a low level synchronization of electrical activity that spans regions 

of the brain.  It is this synchronization that interferes with the normal working of 

the brain and gives rise to the epileptic seizure [2,3].  Such electrical coupling 

must be able to be observed and described.  Many researchers have adopted 

the analysis of time series recordings to predict when epileptic events will occur.  



Researchers use measures of low dimensional chaos and nonlinear dynamics, 

such as entropy, Lyapunov exponents, attractor reconstruction, etc [3,4].  This 

does little to solve the issue of how cells synchronize, only to detect when they 

do or predict when they will.  There are at least three states in the epileptic brain, 

preictal, interictal, and postictal, so intuitively, brain activity transitions from 

normal to epileptic and back to normal.  The dynamics of synchronization that 

lead to the seizure and the dynamics that restore normal function are caused at 

the cellular level.  Through cooperative neural networks, in an epileptic brain, 

such synchronizing dynamics cause disastrous consequences.  Paroxysmal 

disorders, such as this, are difficult to fully understand because of the complex 

nature of the dynamics, whereas the same set of dynamical activity in the normal 

brain produces no effect whatsoever [2].     

The comprehensive question is then “What are the cellular characteristics, that 

when coupled with other cells in neural networks, produce cooperative 

synchronization.”  In order to answer this question, simultaneous recordings 

would need to be made from a neural network known to attain a synchronous 

state.  That, in and of itself, is insufficient to contribute significantly to the 

understanding of epileptic events, since the synchronized behavior propagates 

through the brain, causing destructive electrical wave fronts [4].  

However, it would help to elucidate the mechanisms of communication during 

synchronized activity which, in turn, could reveal the reasons why some neural 

networks are susceptible to pathological events while others are not. 

 

 



[1]  Strogatz, S.  Sync.  Hyperion, New York, 2003.  pp 276-277. 

[2]  Lopes da Silva, et al.  Epilepsies as Dynamical Diseases of Brain Systems:  
Basic Models of the Transition Between Normal and Epileptic Activity.  Epilepsia.  
(2003) 44(Suppl.12) 72-83.    
 
[3]  Rieke, et al.  Discerning Nonstationarity From Nonlinearity in Seizure-Free 
and Preseizure EEG Recordings From Epilepsy Patients.  IEEE Trans. 
Biomedical Engineering.  (2003) 50, 634-639. 
 
[4] Sprott, Julian.  Chaos and Time-Series Analysis.  Oxford University Press, 
New York, 2003. 
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PhD Comprehensive Exam Question 2 

Professor Leland B. Jackson 

 

For the unity gain first order FIR lowpass filter 1
1( ) (1 ) / 2H z z−= + , and  

-1( )  ( ) ( )S z H z H z= , where S is the z transform of the autocorrelation function of h(n), 

i.e. r(n) = h(n)*h(-n).  This gives 1
1

1( ) ( 2 )
4

S z z z−= + + .  Similarly, for the unity gain first 

order FIR highpass filter 1
2 ( ) (1 ) / 2H z z−= − , giving 1

2
1( ) ( 2 )
4

S z z z−= − + + − .  

Evaluating 2 ( )S z around the unit circle, we have ( )1
2

1( ) 2
4

S z z z−= − + + − , for 2 ( )jS e ω  

 

 

 

 

For perfect reconstruction, 1 1
1 1 1 1( ) ( ) ( ) ( ) 1H z H z H z H z− −+ − − = .  Of course, this is 

equivalent to 1 2( ) ( ) 1S z S z+ = , since 2 1( ) ( )H z H z= − , by construction. For the class of 

polynomials (1 ) px− , where (1 ) px−  is a lowpass filter, it follows that a corresponding 

highpass filter can be derived by 1 - (1 ) px− .  These orthogonal polynomial sequences are 

termed Hermite interpolation polynomials and can be recursively derived as 

1
'
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0
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As an example, the derivation for p = 2 follows. 

1
' 2
22 11 11
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The summation is just 111 [ 2 ] [ 0.5 2 0.5 ]
4

z z z z−+ − + − = − + − , since any number choose 0 

is equal to 1 and any polynomial raised to the 0th power is 1.  The final result is then 

' 3 2 1 2 3
22 ( ) 0.0313 0 0.2813 0.5 0.2813 0 0.0313S z z z z z z z− − −⎡ ⎤= − −⎣ ⎦ .  Of course, 

the result is symmetric and so it is linear phase.  A simple shift, 3z− , makes it causal. 

                

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.03

0.182

0.394

0.606

0.818

1.03

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

Magnitude and Phase Responses

-9.8839

-7.813

-5.7421

-3.6712

-1.6003

0.4707

Ph
as

e 
(r

ad
ia

ns
)

 

 



PhD Comprehensive for John DiCecco 
March, 23, 2007  

It is then a trivial exercise to construct the high pass filter as the samples of the impulse 

response about the midpoint are odd negative, i.e. ( 1) ,  for 1, 2,... ( / 2)k k floor length− = .   
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It is clear that the filters are power complimentary, as designed.  The pole-zero plot for 

the designed quadrature mirror filter (QMF)     
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and filter information given by,  

 

For p = 3, a simple recursive program with an adapted convolution command yields 
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with pole-zero plot 
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and filter information given by  

 

The following is a portion of the code used to generate the filter coefficients. 
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p = 3; 
binom = 1; %because any N choose 0 = 1 and any polynomial^0 = 1; 1*1 =1 
for k = 1:p-1 
    binom = [0 binom 0]+nchoosek(p+k-1,k)*nconv(k,s11_hat_b); 
end 
sss = conv(nconv(p,s11_b),binom); 
half = floor(length(sss)/2); 
for k = 1:half 
    vec(k) = (-1)^k; 
end 
sss_hat = sss.*[vec 1 vec]; 
 
Where the function nconv is 
 
function polynomial = nconv(n,x); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%nconv takes in an integer n and 
%convolves the vector x with itself 
%n times 
% 
%J. DiCecco  3/22/2007 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
conv_hold = 1; 
for j = 1:n 
    conv_hold = conv(conv_hold,x); 
end 
polynomial = conv_hold; 
 
 
Recall for the case when p = 2 

' 3 2 1 2 3
22 ( ) 0.0313 0 0.2813 0.5 0.2813 0 0.0313S z z z z z z z− − −⎡ ⎤= − −⎣ ⎦  

To factor this polynomial, first normalize with respect to the leading coefficient. 
 

' 3 2 1 2 3
22 ( ) 1 0 9 16 9 0 1S z z z z z z z− − −⎡ ⎤= − − −⎣ ⎦ .  ' 1

22 22 22( ) ( ) ( )S z H z H z−= , so it 

must factor into two 3rd order polynomials.   

Several points arise from this.  First and foremost, since the polynomial is in the 

frequency domain, we must invoke the techniques associated with spectral factorization.  

There are a number of techniques to do this, and for the stated question, the method of 

roots will suffice.  Also note, that the even order polynomials, except for 0, are zero.  

This is due to the following derivation. 
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1
'

11 11
0

1 ˆ( ) [ ( )] [ ( )]
p

p k
pp

k

p k
S z S z S z

k

−

=

+ −⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ , where ( )1

11
1 2
4

S z z−= + +  

and ( )1
11 2

1ˆ 2
4

S S z z−= = − + − .  This results in 

( ) ( )
1

' 1 1

0

11 1( ) 2 2
4 4

p kp

pp
k

p k
S z z z z z

k

−
− −

=

+ −⎛ ⎞⎡ ⎤ ⎡ ⎤= + + − + −⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
∑ .  Now, if we 

normalize ' 3 2 1 2 3
22 ( ) 1 0 9 16 9 0 1S z z z z z z z− − −⎡ ⎤= − − −⎣ ⎦ and rewrite as 

2
1 2 3 4 5 6

0
1( ) 1 0 9 16 9 0 1

4 2
S z z z z z z z− − − − − −⎛ ⎞ ⎡ ⎤= − − −⎜ ⎟ ⎣ ⎦⎝ ⎠

, the product filter can 

be expressed as 2 1 '
0 ( ) ( )

pp

pS z z S z−= .  Substituting ' ( )ppS z into this equation yields 

211
1 2 ( 1)

0 2
0

11 1( ) (1 ) ( 1)
2 2

kp
p k p k

p
k

p k zS z z z
k

−−
− − + −

=

+ − ⎛ ⎞⎛ ⎞ −
= + − ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ and it is now clear that the 

term in summation cancels the odd orders. 

As mentioned, there are many methods we could invoke to solve the spectral 

factorization.  The most intuitive is the root method.  Once we generate the 

sequence ' ( )ppS z , we root the polynomial, and determine which roots are inside the unit 

circle and on the unit circle (within some error neighborhood).  These are the roots 

responsible for minimum phase. (FIR filters based on Daubechies wavelets are of course 

orthogonal, but they are not linear phase.)  However, since we are looking for a 

factorization, we need only half the zeros, the other half will be generated in the square.  

So for the case of  

2
1 2 3 4 5 6

0
1( ) 1 0 9 16 9 0 1

4 2
S z z z z z z z− − − − − −⎛ ⎞ ⎡ ⎤= − − −⎜ ⎟ ⎣ ⎦⎝ ⎠

, the roots are 

[3.7321  -1.0001  -1.0000 + 0.0001i  -1.0000 - 0.0001i  -0.9999  0.2679] according to 

MATLAB.  We know of course that the error in placement of the zeros at -1 (the 
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+0.0001i) can be ignored and as expected there are 4 roots at -1, one root inside the unit 

circle and one root outside the unit circle (reflected).  The roots used to generate the two 

polynomials ( )H z and 1( )H z−  are then [0.2679 -1 -1].  We use MATLAB’s poly 

command to expand the roots to form [1.0000    1.7321    0.4642   -0.2679].  Finally, the 

polynomial is normalized by multiplying by the square root of the maximum value of 0S , 

0.5 in this case, divided by the square of the sum of the absolute value of the expanded 

roots. That is 

0.5[1.0000  1.7321 0.4642  -0.2679] [1.0000  1.7321 0.4642  -0.2679]
⎛ ⎞
⎜ ⎟
⎝ ⎠∑ , which 

gives [0.3415    0.5915    0.1585   -0.0915].  This is ( )H z .  1( )H z−  is obtained simply by 

flipping the polynomial from right to left, as this is equivalent to time reversal, making 

the causal sequence the required anticausal counterpart.   

Using this technique, the spectral factorization for p = 3 is 

33 ( ) [0.2359    0.5708    0.3242   -0.0957  -0.0601    0.0248]H z = and 

1
33 ( ) [0.0248   -0.0601   -0.0957    0.3242   0.5708    0.2359]H z− = .  Clearly, neither 

1
33( )H z−  nor 33 ( )H z are linear phase; there is no symmetry.  They are a combination of a 

minimum phase (all zeros on or in the unit circle) and a mixed phase (some zeros are on, 

some are out), however, and the phase plot does a nice job of quantifying this. 
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Minimum phase … 
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The pole-zero plots for both 1
33( )H z−  and 33( )H z  show the reciprocal nature of the 

factorization. 

33 ( )H z …
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and 1
33( )H z− … 
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Compare these to the pole-zero plot of 33S , and it is clear that the factorization is correct. 
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Pole/Zero Plot

 
 
 

 

 

Certainly, there are many ways that ' ( )ppS z can be factored to give 1( )ppH z−  and ( )ppH z .  

Some of those factorizations will give mixed order lengths and linear phase solutions.  If 

the filters are to remain orthogonal, as is in the Daubechies case, one has to be more 

selective about the zero placements in order to approximate linear phase.  For 

visualization, consider the impulse responses of 33 33
ˆ( ) and ( )S z S z .   
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By inspection, they are symmetric and so have linear phase.  Now consider the impulse 

responses of the factorization of 1
33( )H z−  and 33( )H z . 
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Combined, of course, it is easy to see the symmetry.  But separately it is clear that they 

do not have symmetry independently and will influence the delay (phase) of the energy in 

the signal.  Now, if we wish to force symmetry by isolating the zeros on the circle as H(z) 

and the reflective zeros as H(z-1), the magnitudes are different 
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but the resulting phase is quasilinear.  (It may look linear, but it’s not!) 
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We have done so, however, at the expense of destroying the causal, anticausal 

relationship as required by the formula 1
1 1 1( ) ( )S H z H z−= .  An important consequence of 
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the symmetry issue is that it destroys orthogonality.  But by preserving the orthogonality, 

we lose the symmetry, and we are back to nonlinear phase. 
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Consider now the case for p = 4.   
 

44 [-0.0012  0  0.0120   0  -0.0598   0   0.2991  0.5000   0.2991  0  -0.0598   0  0.0120   0  -0.0012]S =

 
As expected, it has symmetry and the odd order z terms are zero.  The orthogonal 

decomposition (Daubechies) factors 44S into 

44 ( ) [0.1629  0.5055  0.4461  -0.0198  -0.1323  0.0218  0.0233  -0.0075]H z =  and 

1
44 ( ) [ -0.0075  0.0233  0.0218  -0.1323  -0.0198  0.4461  0.5055  0.1629]H z− = , which is 

the flipped (time reversed) version of 44 ( )H z .  (As a side note, it can easily be 

demonstrated using MATLAB’s deconv command that the deconvolution of 

either 44 ( )H z  or 1
44 ( )H z−  from 44 ( )S z  will yield the flipped version of either 44 ( )H z  or 
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1
44 ( )H z− , respectively.)  Again, we see a symmetric impulse response, indicating linear 

phase. 
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When we perform the orthogonal spectral factorization, again we see the impulse 

response become left or right skewed, corresponding to advance or delay, respectively. 
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In order to approximate linear phase, the impulse response from 44 ( )H z must be made to 

be as close to symmetric as possible.  To accomplish this, the zeros from 

1
44 44 44( ) ( ) ( )S z H z H z−= must be manipulated.  Consider the pole-zero plot for 44 ( )S z  
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where the orthogonal spectral factorization gives the roots for 44 ( )H z  as 

[ 1 1 1 1 0.2841 0.2432 0.2841 0.2432 0.3289]i i− − − − + −  and for 1
44 ( )H z−  

as [3.0407 2.0311 1.7390 2.0311 1.7390 1 1 1 1]i i+ − − − − − .  We can redistribute 

the zeros from 44 ( )H z  to form 44 _1 [ 1 1 0.3289]h = − −  and 

44 _ 2 [ 1 1 0.2841 0.2432 0.2841 0.2432 ]h i i= − − + − .  Similarly, we redistribute the 

zeros from 1
44 ( )H z− to form 44 _3 [ 1 1 3.0407]h = − −  and  

44 _ 4 [ 1 1 2.0311 1.7390 2.0311 1.7390 ]h i i= − − + − .  Clearly, 44 _1h and 44 _ 3h are 

inverses of one another, as are 44_ 2h and 44_ 4h .  By convolving the polynomials associated 
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with 44 _1h and 44_ 4h , the new filter is 

44 _1 44 _ 4( ) ( ) [1.0000   -0.3904   -3.0789    9.2419   24.9488   15.4616   -0.9031   -2.3465]H z H z =  

After normalizing for unity gain 

44 _1 44 _ 4( ) ( ) [0.0229   -0.0089   -0.0705    0.2116    0.5713    0.3541   -0.0207   -0.0537]H z H z =  

We do the same for 44_ 2h and 44_ 3h which yields 

44_ 2 44_ 3( ) ( ) [0.0539    0.0211   -0.3538   -0.5714   -0.2118    0.0706    0.0090   -0.0229]H z H z =

 

Clearly, these two filters are time reversed and negatives of one another. 

The resulting polynomials are approximately symmetric and so give approximately linear 

phase.  
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All the original zeros are represented and accounted for, and in their original positions 
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Pole/Zero Plot

 

Note the distribution of the pairings (green and blue).   

 

 

 



PhD Comprehensive for John DiCecco 
March, 23, 2007  

To illustrate the difference in the number of filter coefficients needed for an FIR versus 

an IIR filter, consider the case of the 2nd order halfband Butterworth filter.  Starting with 

the lowpass filter we have 

[b,a] = butter(2,0.5) 

b = 0.2929    0.5858    0.2929 

a = 1.0000   -0.0000    0.171 

where the coefficients have been normalized to give unity gain.  The highpass filter is 

trivially obtained by negating the middle term in the b coefficients while the a 

coefficients are left unchanged.  
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The plot is generated by squaring the magnitude response since the relationship required 

for reconstruction is 1 1
1 1 1 1( ) ( ) ( ) ( ) 1H z H z H z H z− −+ − − = .  For 1

1 1( ) ( ) ,H z H z−= this is 

equivalent to 2
1( )H z .  If we superimpose the result from the p = 3 product filter, we have 
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These correspond to roughly the same filter.  The difference is the number of coefficients 

necessary to achieve the same result.  Recall for the p = 3 filter, 

33( ) [0.0059   0   -0.0488    0    0.2930   0.5000    0.2930    0   -0.0488   0    0.0059]S z = , 

while for 

33
ˆ ( ) [-0.0059    0   0.0488    0    -0.2930    0.5000    -0.2930    0   0.0488    0    -0.0059]S z =

. 

We can, of course squeeze out the zeros by adding a delay, but we still need to alternate 

the signs with the exception of 0z , which for the causal system, is now 3z− .  Importantly, 

there is no feedback needed since it is FIR.  We look to the Butterworth IIR case and we 

have the coefficients previously listed b = 0.2929    0.5858    0.2929  

a = 1.0000   -0.0000    0.171 for the lowpass.  For the highpass, the only change is the 

negated 1z− term for the b coefficients.  Of course now we need a feedback loop for the 

poles.  For the FIR, there are 7 multiplications with 4 extra delays (no feedback), 
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resulting in a tenth order system.  For the IIR configuration, we have a 2nd system order 

with feedback. 
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APPENDIX 

Matlab code 

clear all 
close all 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
%s11(z) = 1/4[z + 2 + z^-1] and s11_hat(z) = 1/4[-z + 2 + -z^-1] 
%s11_prime(w) = e^jw/4 + e^-jw/4 + 1/2 = 1/2(1 + cos(w)) = cos^2(w/2) 
%similar for s11 hat 
% 
%spp(z) = [s11(z)]^p(sum((p+k-1 choose k)*[s11_hat(z)]^p) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
s11_b = [1 2 1]/4; 
s11_hat_b = [-1 2 -1]/4; 
  
s22 = conv(s11_b,s11_b); 
binom = [0 1 0] + nchoosek(2,1)*s11_hat_b 
  
s22 = conv(s22,binom); 
s22_hat = s22.*[-1 0 -1 1 -1 0 -1]; 
  
[h22,w] = freqz(s22); 
[h22_hat,w] = freqz(s22_hat); 
  
plot(w/pi,abs(h22),'k'),hold on,plot(w/pi,abs(h22_hat)) 
plot(w/pi,abs(h22)+abs(h22_hat),'r') 
grid 
  
p = 3; 
binom = 1; %because any N choose 0 = 1 and any polynomial^0 = 1; 1*1 =1 
for k = 1:p-1 
    binom = [0 binom 0]+nchoosek(p+k-1,k)*nconv(k,s11_hat_b) 
end 
sss = conv(nconv(p,s11_b),binom); 
half = floor(length(sss)/2); 
for k = 1:half 
    vec(k) = (-1)^k; 
end 
sss_hat = sss.*[vec 1 vec]; 
  
  
[hpp,w] = freqz(sss); 
[hpp_hat,w] = freqz(sss_hat); 
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function polynomial = nconv(n,x); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%nconv takes in an integer n and 
%convolves the vector x with itself 
%n times 
% 
%J. DiCecco  3/22/2007 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
conv_hold = 1; 
for j = 1:n 
    conv_hold = conv(conv_hold,x); 
end 
polynomial = conv_hold; 
 
 
 
function b = daubech(s) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%daubech takes in a PSD Spp and 
%performs spectral factorization based 
%on the root locations 
% 
%J. DiCecco  3/22/2007 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
r = roots(s) 
eps_d = 0.01; %Matlab always has that little circle of zeros not on -1  
in = r(abs(r)<(1-eps_d));              
on = r((abs(r)>=(1-eps_d)) & (abs(r)<=(1+eps_d))); 
  
[a,k] = sort(angle(on)) 
on = on(k(1:2:end));%just take half 
  
  
r = [in; on]; 
%r = [on]; 
b = poly(r);     
  
if isreal(s)  %if the signal is real -> complex conjugate roots 
    b = real(b); %just need the real parts since this is the poly 
end 
  
b = b*sqrt(max(s)/sum(abs(b).^2)); 
 
 



 
 
 
 
Biomedical Engineering and Nonlinear Dynamics 
Prof. Ying Sun 
 
1. Define and compare (strict) stationarity and wide-sense stationarity. 
 
 
If for the time series X(t), the joint distribution of 

1 2 1 2[ ( ), ( ),... ( )] and [ ( ), ( ),... ( )]n nX t X t X t X t X t X tτ τ τ+ + +  is the same for all tn and τ, 

the process is said to be stationary in the strict sense [1,2].  In words, given a 

time series, the joint distribution depends only on the difference in time (or 

sample) τ and not the sample time (or sample number) tn.  That is to say, that the 

probabilistic structure is completely invariant under a shift of the time (or sample) 

origin [1].  This is a remarkably difficult condition to prove in working with real, 

finite time series recordings since we cannot say for certain that based on one 

realization (the recording itself), we have captured the statistics of the time 

series.  Stationarity is a function of the process, not the data [3].  However, we 

can sometimes accurately determine a certain number of moments, mean and 

variance, for example, of a time series.  Under such circumstances we can define 

a weaker, less strict, definition of stationarity.  Wide-sense stationarity, or weak-

sense stationarity, characterizes a time series such that the joint distribution of 

1 2 1 2[ ( ), ( ),... ( )] and [ ( ), ( ),... ( )]n nX t X t X t X t X t X tτ τ τ+ + +  is the same up to 

order m, where m is the order of moments [1].  For instance, a time series could 

be stationary up to order 1, if its mean µ were some constant less than infinity 

and did not change throughout the time series.  Further we could define 

stationarity up to order 2, if both the mean µ and variance σ2 were a constant 



less than infinity, and the covariance were strictly a function of the time difference 

between samples.  Mathematically, we can say for a time series {X(t)}, if the 

following conditions are met, it is stationary in the wide-sense. 

  

 

 

 

For the purposes of nonlinear time series analysis, stationarity is a necessary, 

though not sufficient, condition for establishing whether a dynamical system is 

chaotic [3].  Further, one needs to determine the nature of the time series, since 

nonlinear data can often mimic nonstationary data [4].   
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2. Identity at least three different methods reported in the literature for 
testing the stationarity (either strict or wide-sense) of data. 
 
 
There are a number of methods for testing for stationarity in data which, although 

trivial, should be mentioned before listing more the more rigorous tests found in 

literature.  The reason for this is simple.  Should you have a time series that fails 

a simple test, there is no need to spend precious time trying to prove otherwise.  

For instance, a time series can easily be divided in half to yield two new time 

series.  Given a time series x(n), for n = 1,2…N, the two new time series are 

x1(n), for n = 1, 2, …(N/2)-1 and x2(n), for n = N/2, N/2 +1, N/2 +2, …N.  If the 

means and variances of x1(n) and x2(n) are different, within statistical 

significance, the original time series is nonstationary and it is not necessary to 

invoke more elaborate tests.  Other simple tests, such as the autocorrelation 

function, can also yield quick results, but even if these tests fail, one cannot 

conclude that the time series is stationary, and must move on to more rigorous 

tests. 

 

KPSS (1992) 
 

The Kwiatkowski, Phillips, Schmidt, Shin (KPSS, 1992) test is one of several 

stationary tests that employ the method of testing an autoregressive (AR) model 

for unit root.  Given a time series x(n), assume it can be decomposed as 

[ ] [ ] [ ]x n r n n nβ ε= + + , where r[n] is a random walk (r[n]= r[n-1] + u[n], for 

u[n]~N(0, σu
2); βn is a deterministic trend; ε[n] is a stationary error. 

 



The KPSS test can be thought of as other statistical tests in that it yields a 

number which will determine a particular confidence level for the null hypothesis. 

For KPSS the statistic is 2 2 2

1
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N

n
KPSS N S n pσ−

=

= ∑ , where, N is the length of the 

time series, S is the sum process of the error sequence ( terror x x= − ), and 

2ˆ ( )pσ , is the consistent estimator of 2σ .  For large N, 
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10
( )V r dr∫ under the null hypothesis of level 

stationarity (stationarity without a trend), and will approach 
1 2

20
( )V r dr∫  under the 

null hypothesis of stationarity with a trend.  (V1 and V2 are standard Brownian 

bridge distribution).  Below are the statistics established by Kwiatkowski, et al. 
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The difficulties in applying this test are the same as those in all unit root test 

statistics.  Namely, the test is often dealing with non-uniform and non-standard 

distributions, and the distributions are severely affected by deterministic additions 

(constants, trend lines, magic numbers, etc.).  

 

 



Witt, et al, “Testing stationarity in time series” (1998) 

 

This technique is probably the most intuitive (statistically) test for stationarity 

checking.  Again, the time series is divided into smaller parts, and new sets of 

data are produced.  This is done using a windowing technique, though any 

segmentation scheme will work.  Essentially, two tests are preformed.  The 

hypothesis is that A) the one dimensional (1D) probability density is independent 

of time, and B) the power spectral density is independent of time []. 

The first test involves a simple calculation of means and variances that will be 

used to test the time independence of probability distributions of the windowed 

segments.  For weak sense stationary, distributions can be fully categorized by 

the first two moments, µ and σ2 (in fact under the normally distributed Gaussian 

assumption, this is always the case).  The distributions of each window are 

binned and compared using a modified χ2 test statistic.  One can compare one 

window against another sequentially or randomly, or one can compare multiple 

windows.  In the case of comparing two windows, the chi-square statistic is 

2

A,2 2 2
1

( )t
( ) ( )

i jr
k k
i j

k k k

R R
R Rσ σ=

−
=

+∑ , where Ri is the number of elements in the ith  and Rj is 
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distance D. To account for this, Witt, et al, have modified the statistic such that 
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variance in the index distance [].  Once this test shows time independence for the 

first central moments, the test continues to check the time independence of the 

second order noncentral moments.  The autocorrelation function of each 
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where nw is the size of the window [].  Taking the Fourier transform gives the 

power spectral density, which is then binned according to distribution.  The chi-

square test is performed as in the first test, and statistical significance is 

attached.  If the distributions are the same, the signal is stationary (in the weak 

sense), otherwise, it is nonstationary.   

 
Rieke, et al, “Measuring Nonstationarity by Analyzing the Loss of 
Recurrence in Dynamical Systems” (2002) 
 
 
The most important difference in this method is that there is no need to partition 

the data.  Instead, the technique utilizes the concept of “loss of recurrence.”  

Consider a time series x[n], for n = 1, 2 …N.  If we create a phase plot by plotting 

x[n] versus a delayed version of itself, i.e. x[n - 10], the resulting structure is 

termed an attractor.  A neighborhood on the attractor is established 

by ( ) { : }r n n rU x x x xε ε= − ≤ , where rx is a reference vector (point in state space), 

nx is the vector (point in state space) we are judging the distance from the 

reference vector, and ε  is the smallest area (neighborhood) we wish to define.  

Alternatively to the neighborhood being a size, we can refer to the neighborhood 

as a specific number of vectors (points), such that once the number is reached, 

the neighborhood is closed.  In the time evolution of the attractor, the trajectory of 

evolution follows a path around the attractor.  The time lag between successive 

visits to the same neighborhood on the attractor is given by 
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N
− −

= −
−

, assuming that all vectors have the same probability of 

revisiting the neighborhood in some observed lag time 1
n

r x U
l n r

k ∈
= −∑ , where k 

is the number of neighbors in the neighborhood [].  This is a reasonable 

assumption if the time series is stationary.  This revisiting is referred to as 

recurrence, and the loss of recurrence is an indication of nonstationarity, since a 

nonstationary time series will yield an attractor that does not revisit the same 

state space as often as a stationary time series will.   
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Above is a graphic illustration of the difference between an attractor of a stationary time series 

and an attractor of a nonstationary time series.  It is clear that if you were to define a 

neighborhood on the attractor of the stationary signal, many revisits (recurrences) would occur, 

whereas in the case of the nonstationary attractor, there would be a reduction in the number of 

revisits in a similar sized neighborhood.  This is what is meant by a loss of recurrence. 

 

The issue then is to establish a distribution based on the deviation from the 

expected lag E( rl ) to the observed rl .  This is possible if we treat the values rl  as 

independent.  For the case of a stationary signal, again, this is a reasonable 

assumption, since the lag times will be uniformly distributed.  The drawback to 

this assumption is that the reference vector is, of course, also a neighbor and so 



the independence criteria cannot be asserted.  However, large enough sample 

spaces (large k values) will account for this. 

The strength of this test lies in the ease of application and the ability to leave the 

time series intact.   

There are several other noteworthy tests, namely Kennel’s test for stationarity, 

Huang’s empirical mode decomposition (EMD), and Bispectrum analysis.  

Kennel’s test is similar to that proposed by Rieke in that it relies on statistical 

assumptions about nearest neighbors in state space [4].  It is not as intuitive as 

Rieke’s method and still requires the data to be segmented.  Empirical mode 

decomposition, while not actually testing for nonstationarity, isolates the trend 

line in the final intrinsic mode function (IMF) in the decomposition.  Clearly, if one 

wanted to determine whether a trend existed, the EMD will reveal it in the IMF 

decomposition [5].  Bispectrum analysis will be discussed under question 4.    
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3. Name three most useful methods, in your opinion, for analyzing the 
nonlinear dynamics of a one-dimensional data segment. Describe how 
these methods are implemented. Comment on the strength and weakness 
of these methods. 
 
 
Before listing nonlinear analysis tools, it is worth mentioning that linear tools can 

often provide great insights into the time series under review.  Methods such as 

Fourier analysis, autocorrelation, linear filters and predictions, are all valuable 

tools in determining the nature of the time series.  Previously, we discussed 

methods for establishing stationarity, which is a linear process.  These tools, 

however, can only take us so far and eventually, the nonlinearities, if they exist, 

will render the application of linear tools useless.  When that happens, we turn to 

the following. 

 

Phase plots and time-delay embedding 

 

In the discussion of detecting nonstationarity, we showed an example of a phase 

plot to illustrate the concept of loss of recurrence.  We will now look at an 

example dealing directly with interpreting nonlinear systems versus linear 

systems.  Consider the following time series.  The first set is a recording of action 

potentials from the pond snail Lymnaea stagnalis and its corresponding phase 

plot.  (Simply, the phase plot is a plot of a signal versus a delay version of itself.)  

The second set is linear combination of a sine and cosine function.  And the third 

is a chaotic time series, in this case the Lorenz attractor with the known chaotic 

parameters σ = 10, β = 8/3, ρ = 28 [1,2]. 
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Top left.  A time series recording from live tissue.  All biological systems are nonlinear, and the 
phase plot (top right) does a nice job exposing features such as the bends, multiple trajectories, 
and the transitions from one feature in the time series to the other.  Contrast that with a linear 
system (middle left) and its corresponding phase plot (middle right).  Clearly the system is linear 
(periodic) as the phase plot has regular circular and elliptic shaping with no deviation from the 
attractor.  Lastly, the Lorenz equations for σ = 10, β = 8/3, ρ = 28.  Chaos!   
 



A distinction is made here that phase plots and time delay embedding are not 

mutually exclusive.  For a time series for which one has a set of coupled 

equations, phase plots can easily be made by plotting one equation versus 

another, as in the Lorenz case.  However, biological recordings come with no 

such set of equations and so the coupling is revealed by embedding a time 

delay.  (Takens embedding theorem) [2,3,4] 

One immediate limitation of this form of analysis comes to mind.  The dimension 

of the attractor in experimental data is unknown and must be guessed.  This 

leads to a host of difficulties when trying to choose a delay time.  For instance, if 

we increase the delay from the action potential recording from 100 to 500, the 

result collapses, and no information can be gleaned. 

                          

This is the same recording as the previous page, except that the delay has been increased from 

100 to 500 samples.  Note how the phase plot simply follows the rise and fall of the action 

potential without revealing any fine structure.  
 
 
 
 
 
 



Empirical Mode Decomposition (EMD) 
 
 
In EMD, the signal is decomposed into intrinsic mode functions (IMF), each of 

which is linear but need not be stationary. An IMF is defined only if (1) the 

number of extrema and the number of zero-crossings are equal or at most differ 

by one, and (2) the mean of the envelope of the maxima and the envelope of the 

minima is zero at all points.  These criteria eliminate riding waves and help to 

smooth uneven amplitudes [5].  IMFs have properties conducive to signal 

processing, namely that they are linear and they are often stationary.  Even if 

they are not stationary, it is known that IMFs have well behaved Hilbert 

Transforms [5]. 

      Intrinsic mode functions are the product of empirical mode decomposition.  

The decomposition itself assumes the signal being decomposed has a maximum 

and a minimum and that it has a time scale defined by the delay between 

successive maxima or minima.  The EMD is achieved through the following 

steps: 

1) Upper and lower envelopes are formed from the maxima and minima, 

respectively. 

  
2) A cubic spline fits the envelopes. 

 
3) Calculate the mean of the two envelopes and subtract it from the data. 

 
4) If the result satisfies the criteria for an IMF, it is the first IMF, it is subtracted 

from the data and process is repeated until a stopping criterion is met. 

 



5) If the result does not satisfy the criteria for an IMF, the mean is mean is 

subtracted and the resulting signal is taken as the data.  This process is known 

as sifting and continues until the IMF criteria are met. 

 

For visualization, suppose we have the following nonlinear, nonstationary signal.  

This is the familiar sharp microelectrode recording from neuron RPD-1 in L. 

stagnalis.   
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Though not glaringly clear, one can see a trend in the data with a downward 

slope at the base of the recording.  It becomes quite clear in the IMF 

decomposition of the signal (right). (It is the last IMF, in red).                                                          

For a better visualization, we separate the IMFs and it is revealed that the first 

several IMFs contain the higher frequency components, whereas the final few 

IMFs contain the low frequency components.  
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The benefit to this type of decomposition is that it will take a nonlinear, 

nonstationary signal and decompose it into linear, stationary signals.  This is not 

always the case, however, and some times the best the algorithm can achieve is 

orthogonal, approximately stationary signals.  In the above case, the error in 

reconstruction is at the limit of MATLAB®’s machine error.            
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Lyapunov exponent 
 
 
There is perhaps no single number more important to the study of nonlinear 

systems.  Of the many criteria necessary to determine if a system is chaotic, the 

Lyapunov exponent characterizes the most important chaotic property – sensitive 

dependence on initial conditions.  For a deterministic system, i.e. one that is not 

driven by non-random variables, the Lyapunov exponent quantifies the sensitivity 

of the system to initial conditions [2,3].  The exponent is a measure of the 

exponential rate of divergence (separation) from two vectors in state space as 

they follow their trajectories around the attractor.  A positive exponent implies 

that the rate of separation is positive exponential and the system has a strong 

chaotic signature, provided there are at least 3 dimensions in state space [4].  A 

negative exponent implies that the separation is negative exponential and so will 

converge.  This condition implies a dissipative system and the larger the absolute 

value of the negative exponent, the more stable the system.  There is more than 

one Lyapunov exponent for a given system.  In fact, there is one Lyapunov 

exponent for each dimension of the phase space.  Collectively this is the 

Lyapunov spectrum .  Usually, however, we are interested in the largest 

Lyapunov exponent, referred to as the maximum Lyapunov exponent (MLE) [2]. 

The calculation of the Lyapunov exponent from experimental data is not an easy 

task.  First, one has to determine the embedding dimension to accurately capture 

the dynamics of the system that produced the time series.  Of course, we cannot 

know this a priori and so we must test directly for the exponential divergence of 

nearby trajectories.  The technique proposed by Rosenstein, et al, advances 

point by point along a trajectory in m dimensional time-delay embedded phase 



space.  Each point nX  is determined to have a point lX  that is closest to it within 

the state space.  The logarithmic rate of separation of these two points over k 

number of time steps is averaged [2].   
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The slope of the linear portion of the curve generated by ldL
dk

at intermediate 

values of k is the largest (average) Lyapunov exponent.  Small values of k should 

be ignored since the points are not aligned along the maximum expansion vector. 

Likewise, large k should be ignored since eventually k will be as large as the 

entire attractor where no further separation can take place.  Clearly the larger the 

value of k, the better the approximation to the true Lyapunov exponent will be.   

There are inherent difficulties with this approach, however.  Obviously, it is 

computationally extensive for large data sets.  It is also prone to spurious results 

since the attractor may not be well formed for a given embedding dimension m.   
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4. Identify three significant papers that are concerned with the applications 
of nonlinear dynamics to biomedical or biological data.  Briefly summarize 
each paper. Comment on why you think each study is significant. 
 
 
Elson, et al, “Synchronous Behavior of Two Coupled Biological Neurons” 
(1998) 
 

The research leading to this paper was conducted by very well respected and 

well known scientists in both electrophysiology and nonlinear dynamics.  

The paper attempts to answer the questions relating to neuronal dynamics and 

synchronization.  The researchers connected two biological neurons via a 

dynamic clamp that introduced an artificial synapse between them.  The neurons 

were pyloric dilator neurons from the stomatogastric ganglion of the California 

spiny lobster, Panulirus interruptus.  The neurons are known to be electrically 

coupled and exhibit weak synchronization, or state-dependent synchronization 

[1].  The group showed that by varying parameters such as coupling strength and 

membrane conductance, the neurons could be forced to synchronous behavior of 

not just the slow oscillations of reciprocal inhibition, but the fast spikes as well.  

What makes this paper significant is the application of nonlinear systems 

analysis to biological systems.  Biological systems are of course inherently 

nonlinear but before this paper, investigations of neural networks were studied 

using probabilistic models.  Synchronous behavior is responsible for a host of 

pathological conditions including epilepsy and heart attacks.  The ability to 

accurately describe the coupling effect as it relates to synchronization has led to 

predictive models and a greater understanding of neural systems.  

     



Rieke, et al, “Discerning Nonstationarity From Nonlinearity in Seizure-Free 
and Preseizure EEG Recordings From Epilepsy Patients” (2003) 
 
 
Earlier in this examination, a technique for analyzing the loss of recurrence was 

discussed in application to detecting nonstationarity [2].  This technique was 

applied to electroencephalogram (EEG) recordings.  It is known that nonlinearity 

and nonstationarity are independent properties of the EEG and that 

nonstationarity, in the presence of nonlinear signals, provides valuable biological 

information.  A formal treatment of the nonlinear detection algorithm, iterative 

amplitude adjusted Fourier transform surrogate data (IAAFT), is beyond the 

scope of this discussion, but the basic idea is provided for reference.  It is well 

known that many different signals can have the same power spectrum density 

distribution and share the same autocorrelation function.  It is possible then to 

maintain these properties of a time series and search for a random (Gaussian) 

signal that shares the same properties.  This is the basis of surrogate data and is 

used as a comparison to test determinism and linearity.  The reason for this is 

quite simple:  nonlinear systems very rarely generate Gaussian distributions.  

The null hypothesis is that the original time series can be reconstructed with 

random surrogates.  Many improvements exist that allow rescaling of the 

Gaussian linear process [3]. 

The paper is significant in that it provides a combined measure for nonlinearity 

and nonstationarity, and demonstrates that important information is contained in 

those properties.  Too often we rush to linearize and detrend.  This paper 

provides clear evidence that to do so would be to “throw out the baby with the 

bathwater.” 



Salisbury, J. and Sun, Y., “Assessment of Chaotic Parameters in 
Nonstationary Electrocardiograms by Use of Empirical Mode 
Decomposition” (2004) 
 
 
The knee jerk reaction to choosing this paper would be a belief that the author 

was trying to curry favor with the reviewer.  While on the surface that may be 

plausible, I submit that is not the case.  The author began graduate studies in the 

fall of 2004 and was given this paper to read.  It was the author’s introduction to 

the Empirical Mode Decomposition (EMD) and began, what is to date, a “several” 

year march toward a PhD based on nonlinear dynamics.   

A summary treatment of the EMD technique was provided earlier in this work.  In 

the Salisbury-Sun paper, the application of this technique to the American Heart 

Association (AHA) database is used to determine the chaotic parameters present 

in electrocardiograms (ECG).  It is well established that biologically generated 

time series are inherently nonlinear.  Certain features of the ECG, namely the RR 

interval, are known to be chaotic.  However, it is often difficult, if not impossible, 

to apply meaningful analytic metrics to nonstationary data.  The EMD 

decomposes nonstationary data into linear (or at least orthogonal) and stationary 

IMFs and so is well suited to apply chaos analysis, as that analysis requires the 

data be stationary.   

The paper is significant in that it touches on a host of techniques for handling 

nonlinear dynamical systems, namely Lyapunov exponents, nonlinear detection 

via the bispectrum analysis, phase-space reconstruction, and correlation 

dimension.    
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