
Parameter Estimation of a Known Chaotic Time Series Corrupted by

White Gaussian Noise

John DiCecco

Electrical, Computer, and Biomedical Engineering Department

University of Rhode Island

Kingston, Rhode Island, 02881

May 1, 2007

Abstract

The subject of parameter estimation in linear signals embedded in white Gaussian noise has
been extensively studied. The subject of nonlinear choatic signals, however, has received much less
attention. This paper will examine some of the known techniques for estimating the parameters of
chaotic signals such as iterative maps, including the tent map and the logistic map.

1 Introduction

Chaotic signals present a special difficulty in parameter estimation. The difficulty arises from the
definition of a chaotic system: sensitive dependence on initial conditions. Very slight changes in the
initial condition(s) cause significant effects in the evolution of the time series [1]. While chaotic systems
are nonlinear by definition and apparently random, they are deterministic. Once the intial condition is
found, the whole time series is known. For the purposes of this paper, two particular chaotic systems
will be investigated. The logistic map, given by

s[n + 1] = As[n](1− s[n]) (1)

for 0 < A < 4, is a 1-D map representing exponential growth in discrete time [1]. A somewhat simpler
map is given by the tent map,

s[n + 1] =

{
2s[n] s[n] ≤ 0.5

−2s[n] + 2 s[n] > 0.5
(2)

which is conjugate to the logistic map, and so named because of its shape (fig. 1) [1][2]. The critical issue
of parameter estimation when confronted with 1-D chaotic unimodal iterative maps is noninveribility.

1

Each iterate s[n] has two preimages s[n− 1] given by

s[n− 1] = 0.5±
√

0.25− s[n]
A

(3)

for the logistic map. These images typically are different, resulting in a loss of one bit (factor of 2) of
information for each iteration, since there is no way to determine which of the preimages generated the
value s[n] [1].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

s[n]

s[
n+

1]

Logistic Map for A = 4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

s[n]

s[
n+

1]

Tent Map for A = 2

Figure 1: The Logistic Map (Top) and Tent Map (bottom)

2

2 Cramer-Rao Lower Bound

Given that an arbitrary signal (chaotic or not) is embedded in noise, the ability to estimate any of the
values that parameterize such a signal is directly dependent on the probability density function of the
noise. For this paper, the noise model will be based on zero mean white Gaussian noise (WGN). The
signal dependence on the parameter θ can then be modeled using the likelihood function, given by

p(x; θ) =
1

(2πσ)
N
2

exp

[
− 1

2σ2

N−1∑

n=0

(x[n]− s[n; θ])2
]
. (4)

The Cramer-Rao lower bound (CRLB) provides the achievable lowest limit of the variance of an unbiased
estimator [3]. To achieve the CRLB for a signal parameterized by θ, the variance of any unbiased
estimator must satisfy

var(θ̂) ≥ 1

−E
[

∂2 ln p(x;θ)
∂θ2

] (5)

The expression in the denominator of the CRLB is known as the Fisher information, which is expressed
as

I(θ) = −E

[
∂2 ln p(x; θ)

∂θ2

]
. (6)

For the general signal parameterized by theta (s[n; θ]) embedded in WGN, the CRLB is given by

var(θ̂) ≥ σ2

N−1∑

n=0

[
∂s[n; θ]

∂θ

]2
. (7)

In the case of estimating the initial condtion of the chaotic signal s[0], the CRLB can be shown to be

I−1(ŝ[0]) =
σ2s[1]

N−1∑

n=0

4ns[n + 1]

(8)

where I(ŝ[0]) is the Fisher information for ŝ[0] [5].

3 Maximum Likelihood Estimation

The Maximum Likelihood Estimator (MLE) is perhaps the most widely used estimator for practical
data problems [3]. The heuristic nature of the method makes it well suited for complex data sets. For
the problem of estimating parameters of a chaotic signal embedded in WGN, the model is

x[n] = s[n] + w[n] n = 0, 1, ..., N − 1 (9)

3

for s[n] a deterministic, but chaotic, signal based on the nonlinear noninvertible map

s[n] = f(s[n− 1]). (10)

The likelihood function can then be written as

p(x; θ) =
1

(2πσ)
N
2

exp

[
− 1

2σ2

N−1∑

n=0

(x− s[n; θ])2
]

(11)

where θ is the parameter to be estimated. This paper is primarily concerned with addressing the
estimation of the initial condtion s[0] of a chaotic time series. The intitial condition of a chaotic system
is of great importance because the time series, though chaotic and seemingly random, is deterministic,
so once the initial condition is determined, the entire time series is known [1].
The MLE for the initial condition is found by minimizing

J(s[0]) =
N−1∑

n=0

(x[n]− s[n])2 (12)

where s[n] = f (n)(s[0]) and f (n) is the nth order iterate of the map [2][5]. This is essentially a least squares
estimator[5]. There are, however, inherent difficulties with this approach to estimating parameters from
known chaotic maps. The likelihood function for such maps is highly irregular and is known to have
fractal (self similar) characteristics [5].
The MLE of the initial condition of the logistic map is known to be consistent, unbiased, achieves the
lower bound, and assumes a Gaussian distribution, under certain conditions, as the variance of the
noise goes to zero [4][5]. For instance, under normal circumstances, two chaotic signals with different
initial conditions must diverge as the map is iterated. However, the logistic map will yield the same
signal for the initial condition s[0] and the initial condition 1− s[0]. But since the logistic map is twice
continuously differentiable and satisfies the condition

N−1∑

n=0

(s[n; θ1]− s[n; θ2])2 = 0, iff θ1 = θ2 (13)

it can be shown that ŝ[0] → s[0], with probabilty one [3]. This means that the properties of consistency
and normality do not hold as N →∞, but rather they hold as the variance of the noise goes to zero.

4 The Logistic Map

The logistic map has very interesting properties for varying values of the parameter A in (1). It is
known that the map is chaotic once A reaches the accumulation point at A = 3.5699456718...[1]. The
map goes in and out of chaos from this value to A = 4, where it is known that any intial condition
results in chaotic orbits (figs. 2 and 3) [1]. For the remainder of this paper, it is assumed that the map
is chaotic with parameter A = 4 unless specifically noted otherwise.

4

Figure 2: Bifurcation map for 3 < A < 4. Beyond A = 3.5699456718..., chaos.

Figure 3: Cobweb evolution of the logistic map. Each trip around one box of the web corresponds to
one iteration of the equation. In the case for A = 4, any initial condition leads to chaos.

The notion of chaos implies three things: 1) the system is bounded 2) it is aperiodic and 3) has sensitive
dependence on initial condions. Of course boundedness and periodicity are relatively straightforward
things to prove. The dependence on initial conditions, however, is a bit more difficult to show. Graph-

5

ically, however, this dependency is easy to see. Consider fig. 4. Clearly, after just 4 iterations, the
signal resulting from an initial condition of 0.5 and the signal resulting from an initial condition of
0.501 are showing signs of diverging. After 10 iterations, the divergence is more pronounced. In fact,
the divergence is exponential. This is quantified by the Lyapunov exponent and it is used to prove the
existence of chaos [1]. There are a host of estimation schemes to determine the value of the Lyapunov
exponent from a time series, most of which assume that the initial condition is known.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterate (n)

s[
n

+
 1

]
First Hundred Iterates of the Logistic Map
Initial conditions: Red − 0.5 Blue − 0.501

Figure 4: Sensitive dependence on initial conditions.

It is tempting to use the iteration function in (10) in the forward direction to estimate the initial
condition. However, as demonstrated in fig. 4, the propagation of errors is extremely unforgiving and
this approach will fail.

4.1 The Itinerary

In order to work around the propagation of errors difficulty, the data sequence {s[0], s[1], ..., s[N − 1]}
is replaced by the itinerary {pn}N−1

n=0 , where for the logistic map

pn =

{
0 0 ≤ s[n] < 0.5
1 0.5 ≤ s[n] < 1

(14)

since the map reaches a maximum at 0.5. In this way, it is possible to account for the fact that each
iteration generates two preimages s[n − 1] of the next value s[n]. Without the itinerary, it would be

6

impossible to know which of the two preimages preceeded the current sample (fig. 5). In fact, it is
precisely this loss of information that makes the forward iteration scheme impractical for parameter
estimation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s[n]

s[
n

+
 1

]

Two Initial Conditions (s
0
 = 0.37 and (1 − s

0
) = 0.63)

 Produce Same Signal

Figure 5: Two different initial conditions s[0] = 0.37 and s[0] = 0.63 produce the exact same signal.
The green and red trajectories trace right on top of one another. Note that the height of the map does
not reach 1 for this graph. The parameter A has been changed from 4 (chaotic) to 3.5 (periodic) for
the purpose of demonstrating that two different initial conditions lead to the same signal.

4.2 Topological Conjugacy

A particularly useful relationship exists between the tent map (2) and the logistic map (1); they are
topologically conjugate. Mathematically, two functions are topologically conjugate if there exists a
homeomorphism h that allows one function to map to the other on their native intervals [2]. That is,
let f : x → x and g : y → y. If

h(f(x)) = g(h(y)) (15)

then the maps associated with the two functions f and g are said to be topological conjugates, and h is
the homeomorphism that maps the function f to the function g [2]. This is easy to see by considering

7

fig. 6. The conjugate function (homeomorphism) that maps the tent map to the logistic map is

h(x) = sin2
(

π

2
x

)
. (16)

An inverse function h−1 is easily derived to yield

h−1(x) =
1
π

arccos2 (1− 2x) (17)

where x is on the interval 0 → 1.

Figure 6: Conjugacy relationship between the tent map and the logistic map.

5 The Halving Method

As noted earlier, there are inherent difficulties when attempting to propagate any iterate map in the
forward direction, i.e. s[n] = f(s[n − 1]). Upon closer inspection, it will be very easy to see why, and
how the nature of this difficulty can be used to work around it.
Suppose the value for s[40] were known and one needed to estimate the initial condition s[0]. Recall from
(3) that each s[n− 1] has two preimages associated with it. That means that there are 240, 1.1× 1012,
possible preimages for s[n]. Clearly, the noninvertibility of the map creates a logistical impossibility of
keeping track of the preimages without some bookkeeping scheme. However, recall that the itinerary of
the signal allows us to mark each preimage s[n− 1] based on s[n]. This string of 1′s and 0′s creates a
binary representation of the preimages.
The function operating upon s[n− 1] in (10) can be rewritten in terms of other functions as

f = h ◦ T ◦ h−1 (18)

8

where h is defined in (16), T is the tent map (2), h−1 in (17), and ◦ defines a function order operator.
That is, h ◦ T ◦ h−1 is equivalent to h(T (h−1(s[n− 1]))).
If s[n] is represented in the binary format, the effect of the tent map is to shift left for the argument
of T in the interval 0 ≤ arg < 0.5 and shift left and complement if the argument is in the interval
0.5 ≤ arg < 1 [5]. This is readily seen if we consider the tent map with initial condition s[0] = 8

25 ,
which has a binary representation of 0.01010001111010111. Of course 8

25 < 0.5 so s[1] = 16
25 , which has

a binary representation of 0.1010001111010111, as expected, since this is just the left-shifted version of
8
25 . For verification of the complement effect, since 16

25 > 0.5, the next iteration of the tent map produces
s[2] = −32

25 + 2, which is 18
25 . This has a binary representation of 0.10111000010100011, the left-shifted

and complemented value of s[1].
If the itinerary pn is now determined from h−1(s[n]) instead of s[n], for s[n] derived from the logistic
map, this is clearly equivalent to mapping the logistic map onto the tent map. The itinerary is now
that of the tent map with the initial condition of the logisitic map (fig. 6). All that remains to estimate
s[0] is to recursively determine

bn+1 = bn ⊕ pn (19)

where ⊕ denotes the exclusive or (xor) and bn+1 is determined by

h−1(s[n]) =

{
0.bn+1bn+2..., if bn = 0
0.b̄n+1b̄n+2..., if bn = 1

(20)

To start the recursion, b1 = p0 [4]. Using (17) to map back to the logistic map, the halving method for
estimating the initial condition is given by

ŝ[0] = sin2

(
π

2

N∑

n=1

b̂n2−n

)
[4]. (21)

Essentially, the halving method reduces the interval in which the intial conditon must reside by half
at each n iteration. The method can continue ad infinitum, in theory, or at least to N − 1, or until
the accuracy criteria are met. Caution must be used with this method, however, when using it to
determine an initial condition of a chaotic map. Recall the central theme of a chaotic system: sensitive
dependence on initial conditions. Now consider a modest time series length of N = 10. The detectable
error is, at most, 1

2N or approximately 0.001 [4]. This amount of error is catastrophic in initial condition
estimation, as was shown in fig. 4.
Of course, if enough samples exist, there are no difficulties with getting an accurate estimation according
to (21), since the halving method continues to divide the interval in half as 1

2N . A time series length
of 100 samples, for instance, produces a maximum error of 10−31! To illustrate this, consider the
estimation of an initial condition from a time series where 10 samples are available in one instance,
and 100 samples are available in the other. The initial condition is known to be 0.31. In the case
of N = 10, the estimation from (21) produces ŝ[0] = 0.30865828381746, where as N = 100 produces

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

Initial condition

MLE for s
0
 = 0.37, SNR = 0dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

Initial condition

MLE for s
0
 = 0.37, SNR = 10dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

Initial condition

MLE for s
0
 = 0.37, SNR = 20dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

Initial condition

MLE for s
0
 = 0.37, SNR = 30dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

Initial condition

MLE for s
0
 = 0.37, SNR = 40dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

Initial condition

MLE for s
0
 = 0.37, SNR = 50dB

Figure 7: Performance of the MLE. Note that at high SNR, the minimum of the function estimates
the correct initial condition (s[0] = 0.37), but also identifies the value 1 − s[0], since these two initial
conditions produce the same time series. At low SNR, the MLE fails to identify the initial condition
(top,left and right).

ŝ[0] = 0.31000000000000. For N > 100, the error is less than computational error so further lengths of
N are superfluous.

10

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Trials

In
iti

al
 c

on
di

tio
n

Monte Carlo MLE s
0
 = 0.37, SNR = 30dB

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Trials

In
iti

al
 c

on
di

tio
n

Monte Carlo MLE s
0
 = 0.37, SNR = 20dB

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Trials

In
iti

al
 c

on
di

tio
n

Monte Carlo MLE s
0
 = 0.37, SNR = 10dB

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Trials

In
iti

al
 c

on
di

tio
n

Monte Carlo MLE s
0
 = 0.37, SNR = 0dB

Figure 8: An SNR lower than 30dB causes the MLE to produce inconsistent estimations.

6 Performance of Estimators and the Cramer-Rao Lower Bound

In [5], the author aludes to the fact that the MLE is fractal in nature. This is readily seen in fig. 7.
Notice that the overall MLE is composed of smaller versions of itself. This is the hallmark of self-similar,
fractal characteristics. Berliner [6] notes that concentrated, spikey liklihoods generally lead to accurate
estimates - for well behaved problems. It is well established, however, that chaotic systems are not well
behaved. In this series, a grid search is used with the MLE to determine the initial conditon with a
data record length of N = 10. In the case of fig. 7, the initial conditon s[0] was arbitrarily chosen
to be 0.37. For high signal-to-noise ratios (SNR) and a grid search size proportional to the accuracy
of the initial condition, the MLE performs well, as expected. But even at an SNR of 20dB, the MLE
breaks down and is not consistent. This is due to the fact that introducing a small amount of error
in the initial condition, the evolution of the time series changes dramatically and it is impossible to
determine the initial condition with any regularity (fig. 8). Of course, the MLE over the interval 0 → 1
is symmetric, since it was noted earlier that two different initial conditions will produce the same signal.
This is easily remedied by the itinerary, since the itinerary contains the mapping that indicates which
half of the interval the initial condition originated.

11

As stated in (8) the CRLB for the initial condition of the logistic map is known to be

I−1(s[0]) =
σ2s[1]

N−1∑

n=0

4ns[n + 1]

. (22)

This is derived from (7) by setting s[n] = sin2(π2nα) and α = 1
2π arccos(1 − 2s[0]) [5]. To determine

the performance of the MLE and the halving method, the power in dB of the mean square error (MSE)
is plotted versus the SNR in (fig. 9). As expected, at high SNR, both the halving method and the
MLE using the grid search method perform well. Recall that the MLE for the logistic map achieves the
CRLB as SNR→ ∞. The plots in fig. 9 were generated using a Monte Carlo simulation of 100 trials.
The small fluctuations in the values about the CRLB are due to statistical variations introduced by the
simulations, since the bias, at high SNR, goes to zero (fig. 10).

10 15 20 25 30 35 40
10

20

30

40

50

60

70

80

90

100

SNR (dB)

−
10

lo
g(

m
se

)

CRLB analysis for Logistic Map (N = 10, s[0] = 0.37)

MLE fine grid search

Halving method

CRLB

Figure 9: Comparison of the performance of the estimation methods.

6.1 CRLB Plotting Techniques

That the performance of an estimator is related to the length of the data record is well understood.
In fact, it is the exponential relationship with the length that forms the bound. However, it has been
noted that chaotic systems have a minimal relationship to data record lengths. Because of this, it is
important to address the size of the estimation error, since large errors will not be able to attain the
bound. In the case of the halving method, for a data record length of N = 10, the estimator can only
achieve an error of approximately 0.001. (This is due to the fact that the halving method is bounded

12

by 1
2N , as indicated in (21).) To compensate for this, [4] proposed a method to perform a coarse search

with a modification to (21). A coarse estimate is first obtained by

ŝ[0] = sin2

(
π

2

(
N∑

n=1

b̂n2−n + 2(N+1)

))
(23)

The effect of this added term is to center the estimate on the interval

(
N∑

n=1

b̂n2−n,
N∑

n=1

b̂n2−n +
1

2N

)

before performing a grid search using 100 points in the interval [4]. The search is repeated to narrow
the interval and reduce the error in the estimate.
The halving method is a suboptimal, but computationally efficient algorithm [5][7]. Its performance is
similar to that of the MLE grid search method but involves less iteration and computational complexity.
There appear to be no distinct advantages to using the MLE other than the fact that it is straightforward
to compute, albeit with a longer computation time.

10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

SNR (dB)

B
ia

s
(%

)

Bias (in percentage) of Estimators

Bias MLE
Bias Halving Method

Figure 10: Bias of the estimation methods.

References

[1] J. Sprott, Chaos and Time-Series Analysis. Oxford, UK: Oxford University Press, 2004.

[2] H. O. Peitgen, H. Jurgens, and D. Saupe, Chaos and Fractals: New Frontiers in Science. Berlin,
Vienna, New York: Springer-Verlag, 1992.

13

[3] S. Kay, Fundamentals of statistical signal processing: estimation theory. Upper Saddle River, NJ:
Prentice Hall, Inc., 1993.

[4] S. Kay and V. Nagesha, ”Methods for Chaotic Signal Estimation,” IEEE Transactions on Signal
Processing, vol. 43, pp. 2013-2016, Aug. 1995.

[5] S. Kay, ”Asymptotic Maximum Likelihood Estimator Performance for Chaotic Signals in Noise,”
IEEE Transactions on Signal Processing, vol. 43, pp. 1009-1012, Apr. 1995.

[6] L. Mark Berliner, ”Likelihood and Bayesian Prediction of Chaotic Systems,”Journal of the Amer-
ican Statistical Association, vol. 86, no. 416, pp. 938-952, Dec. 1991.

[7] L. Cong, W. Xiaofu, S. Songgeng, ”A General Efficient Method for Chaotic Signal Estimation,”
IEEE Transactions on Signal Processing, vol. 47, pp. 1424-1428, May 1999.

A Appendix - MATLAB�code

1 %%%%%%%%%%%%%%%%%FINAL PROJECT ELE 661%%%%%%%%%%%%%%%%%%

2 clear all

3 close all

4 A = 4;

5

6

7 x = 0.0001:.001:1;

8 N = length(x);

9 F x = A*x.*(1−x); %%logistic map

10

11 hold on

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%COBBWEB

13 xi = 0.37000000; %%initial condition

14 %xi = 1 − xi;

15 x0 = xi;

16 x1 = A*xi*(1−xi);
17 x11 = x1;

18 xn = [x0];

19 xi = x0;

20 for i = 2:length(x)

21 x1 = A*xi*(1−xi);
22 xn = [xn x1];

23 plot([xi xi],[xi x1],'r−',[xi x1],[x1 x1],'r−')
24 %plot([xi xi],[xi x1],'−.g',[xi x1],[x1 x1],'−.g')
25 xi = x1;

26 end

27 plot(x,x,'b','LineWidth',2)

28 plot(x,F x,'k','LineWidth',2)

29 plot([x0 x0],[0 x11],'c−',[x0 x11],[x11 x11],'c−','LineWidth',2)

14

30 hold off

31

32

33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%MLE

34 snr = 10.ˆ−[1:0.2:4];
35 K = 10;

36 for kk = 1:length(snr)

37 for M = 1:50

38 x init = linspace(0.001,1,1000);

39 sn = xn(1:K) + sqrt(snr(kk))*randn(1,K);

40

41 %coarse search

42 for k = 1:length(x init)

43 MLE(k) = sum((sn − logistic it(A,x init(k),K−1)).ˆ2);
44 end

45 [b,minf] = min(MLE);

46 hol(kk,M) = x init(minf);

47

48 %fine search

49 x init fine = linspace(x init(minf)−0.001,x init(minf)+0.001,1000);

50 for ll = 1:length(x init fine)

51 MLE fine(ll) = sum((sn − logistic it(A,x init fine(ll),K−1)).ˆ2);
52 end

53

54 [bb,minff] = min(MLE fine);

55 holf(kk,M) = x init fine(minff);

56 error(M) = (x init fine(minff) − x0)ˆ2;

57 end

58 mse(kk) = (1/M)*sum(error);

59 bias(kk) = abs(mean(holf(kk,:)) − x0);

60 %subplot(3,3,kk),plot(x init,MLE),hold on

61 end

62 % figure,subplot(3,2,1),plot(hol(1,:),'x'),axis([0 M 0 0.5])

63 % subplot(3,2,2),plot(hol(2,:),'x'),axis([0 M 0 0.5])

64 % subplot(3,2,3),plot(hol(3,:),'x'),axis([0 M 0 0.5])

65 % subplot(3,2,4),plot(hol(4,:),'x'),axis([0 M 0 0.5])

66 % subplot(3,2,5),plot(hol(5,:),'x'),axis([0 M 0 0.5])

67 % subplot(3,2,6),plot(hol(6,:),'x'),axis([0 M 0 0.5])

68

69 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%crlb

70 snp1(1) = [x0];

71 s1 = x0;

72 for k = 1:K

73 sn = 4*s1*(1−s1);
74 snp1(k+1) = sn;

75 s1 = sn;

76 end

77 %n = 0:length(snp1)−1;
78 % crlb = snr.*snp1(2)/(sum(4.ˆ(0:K−1).*snp1(2:end))); %% CRLB for logistic map

15

79 % plot(10*log10(1./snr),−10*log10(crlb),'k'),grid
80 % hold on

81 % plot(10*log10(1./snr),−10*log10(mse),'−or')
82 % xlabel('SNR (dB)'),ylabel('−10log(mse)')
83 % title('CRLB analysis for Logistic Map (N = 10, s[0] = 0.37)')

84 %figure,plot(10*log10(1./snr),bias)

85

86 iterates = logisticplot(x0,N);

87

88 %%%%%%%%%%%%%%%%%%%%%%%%%ITINERARY

89 itinerary = [];

90 if iterates(1)<0.5

91 itinerary = 0;

92 else

93 itinerary = 1;

94 end

95 for i=2:N

96 xi=iterates(i);

97 if xi<0.5

98 itinerary = [itinerary,0];

99 else

100 itinerary = [itinerary,1];

101 end

102 end

103 %%%%%%%%%%%%%%%%%%%%%%%%%

104

105 %%%%%%%%%%%%%%%%%%%%%%%%%HOMEOMORPHISMS

106 h x = (sin(pi/2*x)).ˆ2;

107 h inv x = 1/pi*acos(1−2*x);
108 %%%%%%%%%%%%%%%%%%%%%%%%%

109

110 %%%%%%%%%%%%%%%%%%%%%%%%%B n+1

111

112 for k = 1:length(snr)

113 for M = 1:50

114 s = iterates(1:K) + sqrt(snr(k))*randn(1,K);

115

116 h inv s = (1/pi)*acos(1 − 2*s);

117 for ii = 1:length(s)

118 if h inv s(ii)<0.5

119 pn(ii) = 0;

120 else

121 pn(ii) = 1;

122 end

123 end

124

125 b = [];

126 b(1) = pn(1);

127

16

128 for n = 2:length(pn)

129 b(n) = xor(b(n−1),pn(n));
130 end

131 b(end) = [];

132 n = 1:length(b);

133 %coarse search

134 s hat = (sin((pi/2)*sum(b.*2.ˆ(−n))))ˆ2;
135

136 %first fine search

137 s fine = linspace(s hat−2 −̂K,s hat+2ˆ−K,100);
138 for ll = 1:length(s fine)

139 MLE s fine(ll) = sum((s − logistic it(4,s fine(ll),K−1)).ˆ2);
140 end

141 [bb,minff] = min(MLE s fine);

142 holf(k,M) = s fine(minff);

143

144 %second fine search

145 ss fine = linspace(s fine(minff)−2ˆ−K,s fine(minff)+2ˆ−K,100);
146 for ll = 1:length(ss fine)

147 MLE ss fine(ll) = sum((s − logistic it(4,ss fine(ll),K−1)).ˆ2);
148 end

149 [bb,minfff] = min(MLE ss fine);

150 holff(k,M) = ss fine(minfff);

151

152 error2(M) = (ss fine(minfff) − x0)ˆ2;

153 end

154 mse2(k) = (1/M)*sum(error2);

155 bias2(k) = abs(mean(holff(k,:)) − x0);

156 end

157

158 crlb = snr.*snp1(2)/(sum(4.ˆ(0:K−1).*snp1(2:end))); %% CRLB for logistic map

159 plot(10*log10(1./snr),−10*log10(crlb),'k'),grid
160 hold on

161 plot(10*log10(1./snr),−10*log10(mse),'−or',10*log10(1./snr),−10*log10(mse2),'−xk')
162 xlabel('SNR (dB)'),ylabel('−10log(mse)')
163 title('CRLB analysis for Logistic Map (N = 10, s[0] = 0.37)')

164 figure,plot(−10*log10(snr),bias,'−or',−10*log10(snr),bias2,'−xk')

17

