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Abstract

The subject of parameter estimation in linear FM signals embedded in White Gaussian Noise
has been extensively studied. This paper will present an accurate means of estimating the unknown
initial frequency f0 and frequency sweep rate m for a sinusoidal signal. Experimental results from
an arbitrary signal will also be presented.

1 Introduction

Estimating parameters of unknown sinusoidal signals has many important applications in signal process-
ing and communication theory [1]. Using the observations of a sinusoid embedded in White Gaussian
Noise (WGN)

x[n] = cos(2π(f0n + (1/2)mn2)) + w[n] (1)

where w[n] is WGN with variance σ2, f0 is the initial frequency, m is the sweep rate, and n = 0,
1, ..., N-1, it is possible to accurately estimate the unknown parameters f0 and m from a linear FM
signal. For this paper, the maximum likelihood estimator (MLE) will be used to estimate the unknown
parameters of an arbitrary signal (fig. 1) with the form of (1). An estimation scheme based on the
positive instantaneous frequency (PIF) from the analytic signal will also be examined [2].

2 Maximum Likelihood Estimation

The maximum likelihood estimation (MLE) method is based on the idea that the best estimate of an
unknown parameter (or parameters) is the one that maximizes the likelihood function. The likelihood
function can be viewed as a probability density function (PDF) that, with x fixed, is dependent on some
unknown parameter θ such that

p(x;θ) =
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N−1∑

n=0

(x[n]− θ)2
]
. (2)
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Figure 1: Observations of arbitrary signal.

Clearly, the quantity θ is the parameter to affect the likelihood since all other parameters are fixed.
Of course taking the logarithm of this function isolates the argument. The result is termed the log-
likelihood function. Taking the partial derivative with respect to the unknown parameter θ and setting
the result equal to zero minimizes the log-likelihood function, which, of course, maximizes the likelihood
function. For estimating the intial frequency and sweep rate of (1), where there are N independent and
identically distributed (iid) observations, the likelihood function is maximized by minimizing J for a
signal s[n] parameterized by θ

J(θ) =
N−1∑

n=0

(x[n]− s[n; θ]))2. (3)

For a signal s[n] parameterized by θ = [f0 m]T , (3) can be written as

J(f0,m) =
N−1∑

n=0

(x[n]− cos(2π(f0n + (1/2)mn2)))2. (4)

By expanding the square, the function becomes

J(f0,m) =
N−1∑

n=0

(x2[n]− 2 cos(2π(f0n + (1/2)mn2)) + cos2(2π(f0n + (1/2)mn2))). (5)

Under the assumption that f0 is not near 0 or 0.5, it is clear that by maximizing the cross term
2 cos(2πf0n+(1/2)mn2), the function will be minimized since x[n] is fixed and cos2(2π(f0n+(1/2)mn2)),
after applying some trigonometric properties, converges to N

2 .
While the MLE is not optimal in general, for large enough data records or as N → ∞, the MLE is
asymptotically the minimum variance unbiased (MVU) estimator [1]. In fact, if the MVU exists, the
MLE will produce it [1].
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2.1 Sinusoidal Parameter Estimation

The MLE of the initial frequency of a sinusoid is well known and is obtained by maximizing the
periodogram

I(f) =
1
N

∣∣∣∣∣
N−1∑

n=0

x[n] exp(−j2πf0n)

∣∣∣∣∣

2

(6)

provided that the intitial frequency f0 over the range 0 < f0 < 0.5, is not near 0 or 0.5 [1]. From
fig. 2, it can be seen that the sinusoid embedded in WGN has an initial frequency of f0 ≈ 0.1 that
sweeps to approximately 0.25. This occurs over N number of samples where N = 500. This gives an
approximate sweep rate of 0.0003, which is in the known range of m, since 0 ≤ m ≤ 0.001. Of course,
this type of subjective estimation is unacceptable and we must resort to a more robust estimation
scheme. Additionally, the problem at hand is to find an MLE for both f0 and m, which renders (6) of
limited use for this purpose.
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Figure 2: Power spectrum of arbitrary signal (Frequency is normalized).

As stated in (4), Estimation of the two parameters f0 and m can be computed by extending θ to
θ = [f0 m]T and maximizing the crossterm from (5)

J(f0,m) =
N−1∑

n=0

2 cos(2π(f0n + (1/2)mn2)). (7)

This can be visualized as a real Fourier Transform of a polynomial in n. Recall from (5) that this is the
function which needs to be maximized in order to minimize the the argument of the likelihood function.
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A coarse grid search was used over the known ranges of f0 and m. The estimator yields f0 = 0.1 and
m = 0.0003. It is worth pointing out that maximizing (7) produces a sharper maximum than using
the Fourier transform, which tends to smear the region around the true parameter values (fig. 3).
Recall from fig. 2 that the periodogram provides approximately the same values by inspection, but the
determination of the initial frequency f0 = 0.1 and the final frequency ffinal = 0.25 was subjective, at
best.

Figure 3: Estimation of f0 and m through maximizing the likelihood function (Frequency is normalized).

Using the estimated parameters, the model of the arbitrary signal (1) is constructed without noise. The
purpose of this is to isolate the range of the parameters over the grid which are most likely to produce
the maximum, since noise will artificially produce false maxima. The result allows the grid parameters
to be reduced to a finer scale and improves the estimate. (See figs. 4 and 5)

3 Noise

Often, it is desirable, if not necessary, to have an estimate of the noise variance in the unknown signal.
To be sure, there are many techniques suitable for this task. Two very simple ways in which to determine
an estimate involve the pdf of the noise in a region of the frequency transform known not to contain
any signal. Recall from fig. 2, that the frequency content of the signal was determined to be in the
approximate range of 0.1 ≤ f ≤ 0.25. By isolating a portion of the transform outside this range, say
0.3 ≤ f ≤ 0.5, the noise is isolated and the pdf is due to the noise variance. In effect, this is filtering out
the signal from the noise. Alternatively, if the amplitude of the signal were known, reconstructing the
model of the signal without noise and comparing to the noise corrupted signal would give an estimate
of the power in the noise. Since the estimation of the initial frequency and sweep rate have been
determined, those parameters can be fixed and the problem becomes one of estimating the amplitude
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Figure 5: The MLE for the intial frequency f0 and sweep rate m of the arbitrary (observed) signal,
recalculated using the the finer grid search based on the noiseless model. The estimation of f0 and m

from the test data shows greater precision with one strong maximum over the parameters.

of a sinusoid. This is a straightforward calculation since it is known that the amplitude A of a sinusoid
is given by

Â =
√

α̂2
1 + α̂2

2 (8)
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where α̂1 = 2
N

N−1∑

n=0

x[n] cos 2πf̂0n and α̂2 = 2
N

N−1∑

n=0

x[n] sin 2πf̂0n. (The sweep parameter m has no effect

on the amplitude of the sinusoid and so it has been left out. Of course it could easily be included for
completeness.) The amplitude of the signal is estimated as Â = 1.073 ≈ 1. Estimating the noise from
the power spectrum in this case is quite simple since the difference in power levels is due strictly to
the noise (fig. 6). Using a least squares fit over the region not associated with the linear FM signal,
the power difference between the signal and the noise is approximately 4dB. This gives an approximate
variance of 0.04. Incorporating this variance into the model shows excellent agreement between the
arbitrary data record and the model (figs 7 and 8).
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Figure 6: Power spectrum of signal (noise) versus model (no noise). The difference is due to the noise
power, approximately 4dB.

4 Estimation Using Phase Differences

In order to use the estimator listed in [2], it is necessary to compute the analytic signal. Since the model
given in (1) is real by construction, the analytic signal is defined as

xanalytic[n] = x[n] + jx̂[n] (9)

where x̂[n] is the Hilbert transform of x[n] [4]. Upon taking the Hilbert transform of the model (1), the
result can be written as

xanalytic[n] = (cos(2π(f0n + (1/2)mn2)) + j sin(2π(f0n + (1/2)mn2))) + w[n] = ej(2π(f0n+(1/2)mn2)+w[n])

(10)
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Figure 8: Power spectral density comparison - original test signal (blue) model signal with estimated
noise parameter (red).
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In this form, the conjugate of (6) is easily obtained by negating the argument of the exponent. The
phase difference can now be obtained by multiplying the analytic signal by a one-sample delay of the
conjugate of the analytic signal, such that

∆phase = 6 xn ∗ 6 x∗n+1 n = 0, 1, ..., N − 1. (11)

This is the so-called instantaneous frequency of the signal and provides an estimate of frequency with
repect to time [2]. What is immediately clear from fig. 9 is that the estimate is quite noisy. To
compensate for this somewhat, a linear least squares was fit to the estimate. Now, we see that the
initial frequency f0 ≈ 0.1 and linearly increases to 0.25, which is an increase of 0.15 over 500 samples
giving a sweep rate of m = 0.15Hz

500samples = 0.0003, in very good agreement to the estimate provided by
the MLE. The major advantage to this approach is that it is very computationally efficient [2].
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Figure 9: Instantaneous frequency analysis of arbitrary signal
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A Appendix - MATLAB�code

1 clear all

2 close all

3

4 load ELE661data2.mat

5

6 %%%%%%%%%%%%%%%%%%%%Positive Instantaneous Frequency Estimation

7 fs = 1;

8 N = length(x);

9 n = 0:N−1;
10 f = (0:N−1)/(2*N);
11 hil x = hilbert(x);

12 sig conj = conj(hil x);

13 pha dif = angle(sig conj(1:(N−1),:).*hil x(2:N,:));

14 pha dif(N,:) = angle(hil x(N,:));

15 pha dif = pha dif.*(fs/(2*pi));

16 pha dif(N−2:N) = pha dif(N−3);
17 %%%%%%%%%%%%%%%%%%%%%

18

19 %%%%%%%%%%%%%%%%%%%%Least Squares Estimation for Noisy PIF

20 H = [ones(1,500)' n'];

21 lse = inv(H'*H)*H'*pha dif;

22 llse = lse(1) + n*lse(2);

23 plot(n,pha dif,'r',n,llse,'k')

24 text(4,0.32,['f 0 is = ',num2str(lse(1))])

25 text(4,0.3,['m is = ',num2str(lse(2))])

26 title('Linear Least Squares Estimation from Phase Differences')

27 xlabel('Samples (n)'),ylabel('Frequency (Hz)'),grid

28 %%%%%%%%%%%%%%%%%%%%%%

29

30 %%%%%%%%%%%%%%%%%%%%%Coarse Search

31 load ELE661data2.mat

32 %x = cos(2*pi*(0.1*n + (1/2)*0.0003*n.ˆ2))'; noise free model

33 mm = linspace(0,0.001,N);

34 freq = linspace(0.0,0.5,N);

35 for kk = 1:500

36 for k = 1:500
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37 hol2(kk,k) = sum(2*x'.*cos(2*pi*freq(k)*n + pi*mm(kk)*(n.ˆ2)));

38 end

39 end

40 %%%%%%%%%%%%%%%%%%%%%

41

42 % %%%%%%%%%%%%%%%%%%%%%Coarse Search FT

43 load ELE661data2.mat

44 %x = cos(2*pi*(0.1*n + (1/2)*0.0003*n.ˆ2))'; noise free model

45 mm = linspace(0,0.001,500);

46 freq = linspace(0.0,0.5,500);

47 for kk = 1:500

48 for k = 1:500

49 hol3(kk,k) = sum(2*x'.*exp(−j*(2*pi*n*freq(k) + pi*mm(kk)*n.ˆ2)));

50 end

51 end

52 % %%%%%%%%%%%%%%%%%%%%%

53

54 %%%%%%%%%%%%%%%%%%%%Fine Search Based on Noise Free Model

55 load ELE661data2.mat

56 mm = linspace(2.75e−4,3.25e−4,N);
57 freq = linspace(0.09,0.11,N);

58 for kk = 1:500

59 for k = 1:500

60 hol2(kk,k) = sum(2*x'.*cos(2*pi*freq(k)*n + pi*mm(kk)*(n.ˆ2)));

61 end

62 end

63 figure

64 subplot(121)

65 contour(freq,mm,hol2.ˆ2),grid,axis([0.08 0.12 0.24e−3 0.36e−3])
66 title('Maximum Likelihood of Two Parameter Sinusoid (cos)')

67 xlabel('Initial frequency f 0'),ylabel('Frequency sweep rate m')

68 subplot(122),contour(freq,mm,abs(hol3)),grid,axis([0.08 0.12 0.24e−3 0.36e−3])
69 title('Maximum Likelihood of Two Parameter Sinusoid (FT)')

70 xlabel('Initial frequency f 0'),ylabel('Frequency sweep rate m')
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