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DISCUSSION
A sequential algorithm for biological event detection using statistical 
nonstationarity has been proposed.  The algorithm uses only causal data and 
is capable of being implemented in real time.  The nature of the statistical 
evaluation using only causal samples renders the algorithm useful for linear 
as well as nonlinear data sets [4].  The performance of the algorithm is heavily 
reliant on chosen parameters such as window size.
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ABSTRACT

High dimension complex dynamical systems, such as those found in 
physiological processes, are often accompanied by nonstationarity.  In 
many cases, the nonstationarity is caused by a physiologically 
significant event such as the prelude to ventricular fibrillation in 
cardiac arrest or the change of stasis by introducing pharmaceuticals.  
A need exists to be able to detect and monitor this change.  Most 
conventional attempts at addressing this problem involve segmenting 
the time series and evaluating the statistics of the segments.  The 
difficulty with this approach is that the nature of the nonstationarity 
can be transient, such that it is bounded by two, or more, regions of 
stationarity.  This oscillation may continue for a significant portion of 
the time series.  This poster will discuss the underlying statistical 
justification for asserting stationarity and the use of segmentation time 
series analysis techniques.

INTRODUCTION

At any given moment, the communicatory action of the central nervous system is 
influenced by physical stimuli, chemical stimuli, and electrical stimuli.  It is these 
nonlinear components that make analysis difficult, since it is problematic to 
account for the exact contribution of each underlying stimulus. Stochastic process 
analysis provides some measure of predictability, as stationarity is a function of 
the statistics of the time series.  By establishing benchmark statistics from purely 
random independent identically distributed (iid) variables and comparing these to 
the studied time series, it is possible to detect and quantify the divergence.  A time 
series will be arbitrarily defined as nonstationary if its mean changes by a 
threshold amount over the course of the signal.  That is, a stationary signal is only 
defined as one where the statistics do not change over time, regardless of any 
arbitrary threshold [1].  A sequential algorithm has been developed which 
accurately determines when a test signal makes the transition from a stationary 
signal to a nonstationary one and then back to a stationary signal.  Only current 
and previous values are used for calculation to allow for the transformation to a 
real-time algorithm.

METHODS

A three part control signal consisting of a Gaussian distributed random variable is 
generated to provide the benchmark test signal.  The transition from the first 
segment of the signal to the final segment of the signal is along the slope of the 
difference between the two means.  A protocol of 10% difference between the initial 
and final means and a 5% standard deviation of that difference is established (Fig. 
1, top).  A biological signal, which serves to provide the experimental performance 
of the algorithm, is obtained from the central nervous system (CNS) of the pond 
snail Lymnaea stagnalis.  The administration of 10-6 Molar Acetylcholine (ACh) 
mimics a biological event by changing the neuronal membrane resting potential.  
ACh is administered using a gravity fed perfusion system at time 30s (sample 3000) 
and is removed by rinsing with saline at time 80s (sample 8000) (Fig. 2, top).

Dissection

The dissection of L. stagnalis begins with the administration of 0.36M MgCl to 
anesthetize the animal.  The snail is removed from its shell and pinned to a Sylgard
lined Petri dish in a solution of snail saline.  Microscissors are used to expose the 
CNS, and the ganglia are removed intact and transferred to a smaller Sylgard lined 
Petri dish. The structure is stretched and pinned securely for insertion of the 
microelectrode [2].

Signal Acquisition and Segmentation

Recordings are made possible by the Gene Clamp 500 (Axon Instruments) and the 
PMD-1608FS Analog to Digital (A/D) converter (Measurement Computing).

CALCULATIONS

The most rigid definition of stationarity is established for a random process in which 
the statistics do not change over the entire length of the time series.  Without a priori
knowledge of the length of the time series or the disposition towards nonstationarity, 
the assessment of the critical statistics must involve the windowed statistics versus the 
statistics of the segment.  The window is compared to the threshold established by the 
segment and any statistically significant deviation is detected. The slope of the 
windowed portion of the signal is determined by

(1)

where xi and yi represent the x and y components of the time series and n is the window 
length in samples.  Statistically significant changes between the window mean and the 
segment mean are determined by using the paired-t test 

(2)

where          is the mean of the segment up to and including the window and          is the 
mean of the window [3].  The S term is the sampled variance and the nseg and nwin
terms are the segment size and window size in samples, respectively.
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The recorded signal is defined as an observed time series where the time t and index i
are related by t = t0 + i∆t, and the sample rate is given by 1/∆t.  The term segment refers 
to the portion of the time series that the sliding window is tested against.  The segment 
should not be confused with the time series up to the window, as the segment is defined 
by the mode of the algorithm and thus has a length established by the mode.  That is, 
when the algorithm detects a transition point, it determines the nature of the data 
based on its slope, and defines that point as the beginning of the next segment.

In this analysis, a time series is defined as stationary if the mean remains constant over 
the range of the function with a slope statistically equal to zero.  This is, of course, a 
loose definition of stationarity, but it is sufficient for testing purposes.  For detection 
purposes, a statistically significant difference in mean is one that exceeds 0.95, or 95% 
confidence, in the statistics between the segment and the window [1].  Similarly, a 
statistically significant difference between the calculated slope and zero will have a 0.02 
to 0.05 threshold.  This range is necessary at this stage to compensate for the noise in 
the experimental data.

We define the term segment to refer to the portion of the time series that the sliding 
window is tested against.  The segment should not be confused with the time series up 
to the window, as the segment is defined by the mode of the algorithm and thus has a 
length established by the mode.  A time series is defined as stationary if the mean 
remains constant over the range of the function and the autocorrelation is strictly a 
function of the time difference between samples.  For detection purposes, a statistically 
significant difference is one that exceeds 0.95, or 95% confidence, in the statistics 
between the segment and the window [1].

RESULTS

Test 1 has mean equal to 2.2 for the first 1000 samples and mean equal to 2 for the final 
1000 samples (Fig. 1, A).  The algorithm successfully determines the boundary points of 
the nonstationarity by evaluating the statistical significance of the fluctuations between 
the mean of the segment and the mean of the window (Fig. 1, B).

The performance of the algorithm on Test 2 is shown in Fig. 2.  While it successfully 
identified the addition of the ACh at just after 30s and the return to a stationary mean 
at 80s, the return values were not as accurate as for the control data.  This is improved 
by fine tuning the variable parameters such as window size and statistical sensitivity.

Figure 1.  From top: A) the time series Test 1 - synthetic data, B) the t-test for statistically significant 
difference between the segment mean and the window mean reveals both the change at 1000 and the change at 
2000, C) the time series as a function of its slope compared to zero.  (Note that the transition period from 1000 
to 2000 reveals that the slope is not zero, as expected), D) the data series after the slope of the transition has 
been subtracted from the time series.

Figure 2.  From top: A) the time series Test 2 - experimental data, B) the t-test for statistically significant 
difference between the segment mean and the window mean reveals both the change at 3000 and the change at 
8000 (30s and 80s), C) the time series as a function of its slope compared to zero.  (Note that the transition 
period from 3000 to 8000 reveals that the slope is not zero, as expected), D) the data series after subtracting the 
transition from the time series. AP - action potential, prob – probability.

With special thanks to NIH BRIN grant #RR-16547 and the Partnership in Physiological 
Measurement and Computing, University of Rhode Island.


