

Abstract- Images are often nonstationary. In certain cases, this
nonstationarity is used by operations to distinguish regions of
interest in an image. Edge detection schemes, such as Robert’s
Cross or the Sobel operator, rely on the difference of weighted
values, i.e. the difference in means, to distinguish one
homogenous region from another. In this way an edge can be
identified and marked. There are instances, however, when this
type of edge detection can yield inaccurate results such as when
the regions are changing with a slow gradient or when one mean
calculation is offset by a single (or several) pixel value(s). To
compensate for this possibility, a similar algorithm using
variance instead of mean as the statistic to be analyzed is
proposed.

Index Terms— Image processing, nonstationary, edge
detection

I. INTRODUCTION
 An image can be arbitrarily defined as nonstationary if its
mean or variance changes by a threshold amount over the
extent of the image. That is, a stationary image is only
defined as one where the statistics do not change in space,
regardless of any arbitrary threshold [1]. An algorithm has
been developed which accurately determines when the
variance in a predetermined subimage of the original image
shows a statistically significant change. This change will be
determined using analysis of variance, or the so called
ANOVA. This analysis will focus on techniques involving
the “one-way” model.

II. METHODS

 The algorithm begins by defining a 5 by 5 square pixel
region in an image. In a similar manner to the Sobel operator,
the square is divided into horizontal edge and vertical edge
detectors (Fig.1). The sample variance is approximated by
(1), where n is the number of pixels in each sample, k is the
number of groups, X is the sample mean and iX is the pixel
value [2].

 (1)

 Once this inter sample value is calculated, the intra sample
value (pooled variance) is calculated in a similar fashion by
(2)

 (2)

Fig. 1. A 5 by 5 pixel mask establishes a sample space to calculate the
variance within the mask for vertical edge detection (l) and horizontal edge
detection (r). Shaded regions are the sample spaces.

III. CALCULATIONS

 In order to provide justification for the assertion of any
difference in the statistics, the F distribution, which describes
the distribution of estimates of variance, is used [2]. In simple
terms, it is the ratio of the sample variance over the pooled
variance, or

 (3)

The shape of the distribution, like many other distributions, is
dependent on the degrees of freedom of the sample space.
There are, however, two distinct calculations; one for the
numerator and one for the denominator. The numerator
calculation is simply the number of sample spaces k, minus
one, or (k-1). The denominator is similarly calculated as the
total number of samples in the sample space N, minus one, or
(N-1). This is referred to as an F((k-1),(N-1)) distribution.
For this analysis, any F value above 4.413 indicates a
statistically significant difference in variance [2].

IV. RESULTS

A result of running the ANOVA algorithm is shown in Fig.

2. The top image is the original image. The cluster of images
below the original are lexicographically the ANOVA
algorithm, the Sobel operator, Robert’s cross, and the Canny
iterative method of edge detection. It is clear that the
ANOVA algorithm is more effective in identifying edges than
either the Sobel operator or Robert’s cross, and its
performance is comparable to that of Canny.
 While these results are promising, they are somewhat
sensitive to the type of image and the threshold for the pooled
variance. Additionally, the algorithm returns a raw image
with thicker than desired edges. This is a simple matter to

An Edge Detection Algorithm Using Statistical
Nonstationarity

John DiCecco
Department of Electrical and Computer Engineering, University of Rhode Island, Kingston, RI 02881, USA

2

2 1
()

1

n

i
i

n X X
s

k
=

−
=

−

∑

() ()
() ()

2 2
1 1 2 22

1 2

1 1
1 1p

n s n s
s

n n
− + −

=
− + −

()2

2()p

s
F

s
=

resolve by thinning the edges [3]. Nonetheless, this is an issue
that must be addressed before assertions can be made
regarding its usefulness.
 Fig. 3 illustrates the issue of sensitivity to threshold. In the
bottom image, the threshold is set arbitrarily high and very
few of the differences between the variances are able to cross
this threshold. This results in very poor edge detection. By
decreasing the threshold by a factor of 10, the edges in the
image are more appropriately resolved (top).
 The results suggest an alternate method of edge detection.
The assertion is not that it is a better method of edge detection
but rather an alternate method that has very appealing results
for specific applications. These applications include rapidly
changing images and textural images, i.e. images with similar
means but differing variances in sub regions of the image.

Fig. 2. The top image is the original photograph of the space shuttle.
Lexicographically from the top left of the lower cluster is the ANOVA edge
detection algorithm, the Sobel operator, Robert’s Cross and the Canny
iterative method. Notice the fine details in the ANOVA edge detection that
are lost in Sobel and Robert’s. While Canny performs better in some areas of
the image, the ANOVA algorithm is comparable and in some regions provides
better resolution, such as the scaffold region in left portion of the image.

Fig. 3. The top image is the outline of a noisy t with a low threshold. With
just a 10 fold increase in the threshold, the algorithm cannot accurately resolve
the edges. The performance is clearly dependent on this threshold value.

V. DISCUSSION
An algorithm for edge detection using statistical

nonstationarity has been proposed. The performance of the
algorithm has been shown to perform as effectively as several
of the most popular methods.

There are two important issues with the algorithm in its
current form. One is the inefficiency in the code which slows
the algorithm down for larger images. Second is the threshold
for the pooled variance. If the pooled variance is too small, it
will generate very large F values and skew the distribution.
This parameter has to be adjusted for different types of
images. Future works on this algorithm will attempt to correct
this automatically.

REFERENCES

[1] Leon-Garcia, Alberto. Probability and Random Processes for the
Electrical Engineer. Addison-Wesley Publishing, 1994.
[2] Bahn, Anita K. Basic Medical Statistics. Grune & Stratton, Inc. 1972
[3] Gonzalez, R, et al. Digital Image Processing Using Matlab. Pearson
Education Ltd. 2004

5/11/06 4:18 PM C:\Documents and Settings\John\My Documents\ELE585\final_projd.m 1 of 3

clear all
%definitions -
%mu1 - average of the first horizontal sample space
%mu2 - average of the second horizontal sample space
%mu3 - average of the first vertical sample space
%mu4 - average of the second horizontal sample space
%mu_av - the average of the averages
%varsam - the variance between sample spaces
%samvar - the variance within the sample space
%samvarpool - the pooled variance
%F - the F distribution calculation

d = imread('shuttle.gif')

d = im2double(d)
%resize is added as a temporary solution to large images

[m,n] = size(d)
sampoolthresh =
Fnum =
for i = 3:m-2
 for k = 3:n-2

 %edge detection using variance in the horizontal detection
 mu1(i-2,k-2) = (d(i-2,k-2) + d(i-2,k-1) + d(i-2,k) + d(i-2,k+1) + d(i-2,k+2) + d
(i-1,k-2) +...
 d(i-1,k-1) + d(i-1,k) + d(i-1,k+1) + d(i-1,k+2))
 mu2(i-2,k-2) = (d(i+1,k-2) + d(i+1,k-1) + d(i+1,k) + ...
 d(i+1,k+1) + d(i+1,k+2) + d(i+2,k-2) + d(i+2,k-1) + d(i+2,k) + d(i+2,k+1) +...
 d(i+2,k+2))
 mu_av(i-2,k-2) = (mu1(i-2,k-2)+mu2(i-2,k-2))
 varsam(i-2,k-2) = 10*((mu1(i-2,k-2)-mu_av(i-2,k-2))^2 + (mu2(i-2,k-2)-mu_av(i-2,k-
2))^2)
 samvar1(i-2,k-2) = ((d(i-2,k-2) - mu1(i-2,k-2))^2 + (d(i-2,k-1) - mu1(i-2,k-2))^2
+ ...
 (d(i-2,k) - mu1(i-2,k-2))^2 + (d(i-2,k+1) - mu1(i-2,k-2))^2 + ...
 (d(i-2,k+2) - mu1(i-2,k-2))^2 + (d(i-1,k-2) - mu1(i-2,k-2))^2 + ...
 (d(i-1,k-1) - mu1(i-2,k-2))^2 + (d(i-1,k) - mu1(i-2,k-2))^2 + ...
 (d(i-1,k+1) - mu1(i-2,k-2))^2 + (d(i-1,k+2) - mu1(i-2,k-2))^2)
 samvar2(i-2,k-2) = ((d(i+1,k-2) - mu2(i-2,k-2))^2 + (d(i+1,k-1) - mu2(i-2,k-2))^2
+ ...
 (d(i+1,k) - mu2(i-2,k-2))^2 + (d(i+1,k+1) - mu2(i-2,k-2))^2 + ...
 (d(i+1,k+2) - mu2(i-2,k-2))^2 + (d(i+2,k-2) - mu2(i-2,k-2))^2 + ...
 (d(i+2,k-1) - mu2(i-2,k-2))^2 + (d(i+2,k) - mu2(i-2,k-2))^2 + ...
 (d(i+2,k+1) - mu2(i-2,k-2))^2 + (d(i+2,k+2) - mu2(i-2,k-2))^2)

 %edge detection using variance in the vertical detection
 mu3(i-2,k-2) = (d(i-2,k-2) + d(i-2,k-1) + d(i-1,k-2) + d(i-1,k-1) +...

5/11/06 4:18 PM C:\Documents and Settings\John\My Documents\ELE585\final_projd.m 2 of 3

 d(i,k-2) + d(i,k-1) + d(i+1,k-2) + d(i+1,k-1) + d(i+2,k-2) + d(i+2,k-1))
 mu4(i-2,k-2) = (d(i-2,k+1) + d(i-2,k+2) + d(i-1,k+1) + d(i-1,k+2) + ...
 d(i,k+1) + d(i,k+2) + d(i+1,k+1) + d(i+1,k+2) + d(i+2,k+1) + d(i+2,k+2))
 mu_avh(i-2,k-2) = (mu3(i-2,k-2)+mu4(i-2,k-2))
 varsamh(i-2,k-2) = 10*((mu3(i-2,k-2)-mu_avh(i-2,k-2))^2 + (mu4(i-2,k-2)-mu_avh(i-
2,k-2))^2)
 samvar3(i-2,k-2) = ((d(i-2,k-2) - mu3(i-2,k-2))^2 + (d(i-2,k-1) - mu3(i-2,k-2))^2
+ ...
 (d(i-1,k-2) - mu3(i-2,k-2))^2 + (d(i-1,k-1) - mu3(i-2,k-2))^2 +...
 (d(i,k-2) - mu3(i-2,k-2))^2 + (d(i,k-1) - mu3(i-2,k-2))^2 + ...
 (d(i+1,k-2) - mu3(i-2,k-2))^2 + (d(i+1,k-1) - mu3(i-2,k-2))^2 + ...
 (d(i+2,k-2) - mu3(i-2,k-2))^2 + (d(i+2,k-1) - mu3(i-2,k-2))^2)
 samvar4(i-2,k-2) = ((d(i-2,k+1) - mu4(i-2,k-2))^2 + (d(i-2,k+2) - mu4(i-2,k-2))^2
+ ...
 (d(i-1,k+1) - mu4(i-2,k-2))^2 + (d(i-1,k+2) - mu4(i-2,k-2))^2 +...
 (d(i,k+1) - mu4(i-2,k-2))^2 + (d(i,k+2) - mu4(i-2,k-2))^2 + ...
 (d(i+1,k+1) - mu4(i-2,k-2))^2 + (d(i+1,k+2) - mu4(i-2,k-2))^2 + ...
 (d(i+2,k+1)- mu4(i-2,k-2))^2 + (d(i+2,k+2) - mu4(i-2,k-2))^2)

 %check to see if the horizontal pooled variance is too small or close to zero
 samvarpool(i-2,k-2) = (9*samvar1(i-2,k-2) + 9*samvar2(i-2,k-2))/(2*9)
 %if its large enough ...
 if samvarpool(i-2,k-2)>sampoolthresh
 F(i-2,k-2) = varsam(i-2,k-2)/samvarpool(i-2,k-2)
 else
 %if not, the variance was small so set the F number to zero
 F(i-2,k-2) =
 end
 %check to see if the vertical pooled variance is too small or close to zero
 samvarpoolh(i-2,k-2) = (9*samvar3(i-2,k-2) + 9*samvar4(i-2,k-2))/(2*9)
 %if its large enough ...
 if samvarpoolh(i-2,k-2)>sampoolthresh
 Fh(i-2,k-2) = varsamh(i-2,k-2)/samvarpoolh(i-2,k-2)
 else
 %if not, the variance was small so set the F number to zero
 Fh(i-2,k-2) =
 end

 end
end
[m1,n1]=size(samvar1)
%create holding image
hol = zeros(m1,n1)
ind1 = find(F>Fnum)
ind2 = find(Fh>Fnum)
hol(ind1)
hol(ind2)
%thin out the edge
hol = bwmorph(hol,'thin',10)
%make egde image the same size as the original
final = zeros(m,n)

5/11/06 4:18 PM C:\Documents and Settings\John\My Documents\ELE585\final_projd.m 3 of 3

final(3:m-2,3:n-2) = hol

imshow(final),title(['ANOVA Algorithm with Threshold ',num2str(sampoolthresh)],'FontSize',
16,'FontWeight','bold')
% imshow(d),title('Original Image','FontSize',16,'FontWeight','bold')
%figure,imshow(ed1),figure,imshow(ed2),figure,imshow(ed3)

