
 
 

 
Abstract- Images are often nonstationary.  In certain cases, this 
nonstationarity is used by operations to distinguish regions of 
interest in an image.  Edge detection schemes, such as Robert’s 
Cross or the Sobel operator, rely on the difference of weighted 
values, i.e. the difference in means, to distinguish one 
homogenous region from another.  In this way an edge can be 
identified and marked.  There are instances, however, when this 
type of edge detection can yield inaccurate results such as when 
the regions are changing with a slow gradient or when one mean 
calculation is offset  by a single (or several) pixel value(s).  To 
compensate for this possibility, a similar algorithm using 
variance instead of mean as the statistic to be analyzed is 
proposed.     
 

Index Terms— Image processing, nonstationary, edge 
detection 

I. INTRODUCTION 
       An image can be arbitrarily defined as nonstationary if its 
mean or variance changes by a threshold amount over the 
extent of the image.  That is, a stationary image is only 
defined as one where the statistics do not change in space, 
regardless of any arbitrary threshold [1].  An algorithm has 
been developed which accurately determines when the 
variance in a predetermined subimage of the original image 
shows a statistically significant change.  This change will be 
determined using analysis of variance, or the so called 
ANOVA.   This analysis will focus on techniques involving 
the “one-way” model. 

II. METHODS 
 
     The algorithm begins by defining a 5 by 5 square pixel 
region in an image.  In a similar manner to the Sobel operator, 
the square is divided into horizontal edge and vertical edge 
detectors (Fig.1).  The sample variance is approximated by 
(1), where n is the number of pixels in each sample, k is the 
number of groups, X is the sample mean and iX  is the pixel 
value [2]. 
 
 
             (1) 
 
      
 Once this inter sample value is calculated, the intra sample 
value (pooled variance) is calculated in a similar fashion by 
(2) 
 

                               

        (2) 
 

 
Fig. 1.  A 5 by 5 pixel mask establishes a sample space to calculate the 
variance within the mask for vertical edge detection (l) and horizontal edge 
detection (r).  Shaded regions are the sample spaces. 
 

III. CALCULATIONS 
 
     In order to provide justification for the assertion of any 
difference in the statistics, the F distribution, which describes 
the distribution of estimates of variance, is used [2].  In simple 
terms, it is the ratio of the sample variance over the pooled 
variance, or 
 
                  
                  (3) 
 
The shape of the distribution, like many other distributions, is 
dependent on the degrees of freedom of the sample space.  
There are, however, two distinct calculations; one for the 
numerator and one for the denominator.  The numerator 
calculation is simply the number of sample spaces k, minus 
one, or (k-1).  The denominator is similarly calculated as the 
total number of samples in the sample space N, minus one, or 
(N-1).  This is referred to as an F((k-1),(N-1)) distribution.  
For this analysis, any F value above 4.413 indicates a 
statistically significant difference in variance [2]. 

IV. RESULTS 
 
A result of running the ANOVA algorithm is shown in Fig. 

2.  The top image is the original image.  The cluster of images 
below the original are lexicographically the ANOVA 
algorithm, the Sobel operator, Robert’s cross, and the Canny 
iterative method of edge detection.  It is clear that the 
ANOVA algorithm is more effective in identifying edges than 
either the Sobel operator or Robert’s cross, and its 
performance is comparable to that of Canny.   
     While these results are promising, they are somewhat 
sensitive to the type of image and the threshold for the pooled 
variance.  Additionally, the algorithm returns a raw image 
with thicker than desired edges.  This is a simple matter to 
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resolve by thinning the edges [3].  Nonetheless, this is an issue 
that must be addressed before assertions can be made 
regarding its usefulness.  
     Fig. 3 illustrates the issue of sensitivity to threshold.  In the 
bottom image, the threshold is set arbitrarily high and very 
few of the differences between the variances are able to cross 
this threshold.  This results in very poor edge detection.  By 
decreasing the threshold by a factor of 10, the edges in the 
image are more appropriately resolved (top). 
     The results suggest an alternate method of edge detection.  
The assertion is not that it is a better method of edge detection 
but rather an alternate method that has very appealing results 
for specific applications.  These applications include rapidly 
changing images and textural images, i.e. images with similar 
means but differing variances in sub regions of the image. 

 

 
Fig. 2.  The top image is the original photograph of the space shuttle.  
Lexicographically from the top left of the lower cluster is the ANOVA edge 
detection algorithm, the Sobel operator, Robert’s Cross and the Canny 
iterative method.  Notice the fine details in the ANOVA edge detection that 
are lost in Sobel and Robert’s.  While Canny performs better in some areas of 
the image, the ANOVA algorithm is comparable and in some regions provides 
better resolution, such as the scaffold region in left portion of the image. 
 

 
Fig. 3.  The top image is the outline of a noisy t with a low threshold.  With 
just a 10 fold increase in the threshold, the algorithm cannot accurately resolve 
the edges.  The performance is clearly dependent on this threshold value. 

V.  DISCUSSION 
An algorithm for edge detection using statistical 

nonstationarity has been proposed.  The performance of the 
algorithm has been shown to perform as effectively as several 
of the most popular methods.  

There are two important issues with the algorithm in its 
current form.  One is the inefficiency in the code which slows 
the algorithm down for larger images.  Second is the threshold 
for the pooled variance.  If the pooled variance is too small, it 
will generate very large F values and skew the distribution.  
This parameter has to be adjusted for different types of 
images.  Future works on this algorithm will attempt to correct 
this automatically.  
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clear all
%definitions -
%mu1 - average of the first horizontal sample space
%mu2 - average of the second horizontal sample space
%mu3 - average of the first vertical sample space
%mu4 - average of the second horizontal sample space
%mu_av - the average of the averages
%varsam - the variance between sample spaces
%samvar - the variance within the sample space
%samvarpool - the pooled variance
%F - the F distribution calculation
 
d = imread('shuttle.gif')

d = im2double(d)
%resize is added as a temporary solution to large images

[m,n] = size(d)
sampoolthresh = 
Fnum = 
for i = 3:m-2     
    for k = 3:n-2
        
        %edge detection using variance in the horizontal detection
        mu1(i-2,k-2) = (d(i-2,k-2) + d(i-2,k-1) + d(i-2,k) + d(i-2,k+1) + d(i-2,k+2) + d
(i-1,k-2) +...
            d(i-1,k-1) + d(i-1,k) + d(i-1,k+1) + d(i-1,k+2))
        mu2(i-2,k-2) = (d(i+1,k-2) + d(i+1,k-1) + d(i+1,k) + ...
            d(i+1,k+1) + d(i+1,k+2) + d(i+2,k-2) + d(i+2,k-1) + d(i+2,k) + d(i+2,k+1) +...
            d(i+2,k+2))
        mu_av(i-2,k-2) = (mu1(i-2,k-2)+mu2(i-2,k-2))
        varsam(i-2,k-2) = 10*((mu1(i-2,k-2)-mu_av(i-2,k-2))^2 + (mu2(i-2,k-2)-mu_av(i-2,k-
2))^2)
        samvar1(i-2,k-2) = ((d(i-2,k-2) - mu1(i-2,k-2))^2 + (d(i-2,k-1) - mu1(i-2,k-2))^2 
+ ...
            (d(i-2,k) - mu1(i-2,k-2))^2 + (d(i-2,k+1) - mu1(i-2,k-2))^2 + ...
            (d(i-2,k+2) - mu1(i-2,k-2))^2 + (d(i-1,k-2) - mu1(i-2,k-2))^2 + ...
            (d(i-1,k-1) - mu1(i-2,k-2))^2 + (d(i-1,k) - mu1(i-2,k-2))^2 + ...
            (d(i-1,k+1) - mu1(i-2,k-2))^2 + (d(i-1,k+2) - mu1(i-2,k-2))^2)
        samvar2(i-2,k-2) = ((d(i+1,k-2) - mu2(i-2,k-2))^2 + (d(i+1,k-1) - mu2(i-2,k-2))^2 
+ ...
            (d(i+1,k) - mu2(i-2,k-2))^2 + (d(i+1,k+1) - mu2(i-2,k-2))^2 + ...
            (d(i+1,k+2) - mu2(i-2,k-2))^2 + (d(i+2,k-2) - mu2(i-2,k-2))^2 + ...
            (d(i+2,k-1) - mu2(i-2,k-2))^2 + (d(i+2,k) - mu2(i-2,k-2))^2 + ...
            (d(i+2,k+1) - mu2(i-2,k-2))^2  + (d(i+2,k+2) - mu2(i-2,k-2))^2)
        
        %edge detection using variance in the vertical detection
        mu3(i-2,k-2) = (d(i-2,k-2) + d(i-2,k-1) + d(i-1,k-2) + d(i-1,k-1) +...
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            d(i,k-2) + d(i,k-1) + d(i+1,k-2) + d(i+1,k-1) +  d(i+2,k-2) + d(i+2,k-1))  
        mu4(i-2,k-2) = (d(i-2,k+1) + d(i-2,k+2) + d(i-1,k+1) + d(i-1,k+2) + ... 
            d(i,k+1) + d(i,k+2) + d(i+1,k+1) + d(i+1,k+2) + d(i+2,k+1) + d(i+2,k+2))
        mu_avh(i-2,k-2) = (mu3(i-2,k-2)+mu4(i-2,k-2))
        varsamh(i-2,k-2) = 10*((mu3(i-2,k-2)-mu_avh(i-2,k-2))^2 + (mu4(i-2,k-2)-mu_avh(i-
2,k-2))^2)
        samvar3(i-2,k-2) = ((d(i-2,k-2) - mu3(i-2,k-2))^2 + (d(i-2,k-1) - mu3(i-2,k-2))^2 
+ ...
            (d(i-1,k-2) - mu3(i-2,k-2))^2 + (d(i-1,k-1) - mu3(i-2,k-2))^2 +...
            (d(i,k-2) - mu3(i-2,k-2))^2 + (d(i,k-1) - mu3(i-2,k-2))^2 + ...
            (d(i+1,k-2) - mu3(i-2,k-2))^2 + (d(i+1,k-1) - mu3(i-2,k-2))^2 + ...
            (d(i+2,k-2) - mu3(i-2,k-2))^2 + (d(i+2,k-1) - mu3(i-2,k-2))^2)  
        samvar4(i-2,k-2) = ((d(i-2,k+1) - mu4(i-2,k-2))^2 + (d(i-2,k+2) - mu4(i-2,k-2))^2 
+ ...
            (d(i-1,k+1) - mu4(i-2,k-2))^2 + (d(i-1,k+2) - mu4(i-2,k-2))^2 +...
            (d(i,k+1) - mu4(i-2,k-2))^2 + (d(i,k+2)  - mu4(i-2,k-2))^2 + ...
            (d(i+1,k+1) - mu4(i-2,k-2))^2 + (d(i+1,k+2) - mu4(i-2,k-2))^2 + ...
            (d(i+2,k+1)- mu4(i-2,k-2))^2 + (d(i+2,k+2) - mu4(i-2,k-2))^2)
        
        %check to see if the horizontal pooled variance is too small or close to zero
        samvarpool(i-2,k-2) = (9*samvar1(i-2,k-2) + 9*samvar2(i-2,k-2))/(2*9)
        %if its large enough ...
        if samvarpool(i-2,k-2)>sampoolthresh
           F(i-2,k-2) = varsam(i-2,k-2)/samvarpool(i-2,k-2)
        else
           %if not, the variance was small so set the F number to zero 
           F(i-2,k-2) = 
        end
        %check to see if the vertical pooled variance is too small or close to zero
        samvarpoolh(i-2,k-2) = (9*samvar3(i-2,k-2) + 9*samvar4(i-2,k-2))/(2*9)
        %if its large enough ...
        if samvarpoolh(i-2,k-2)>sampoolthresh
           Fh(i-2,k-2) = varsamh(i-2,k-2)/samvarpoolh(i-2,k-2)
        else
           %if not, the variance was small so set the F number to zero 
           Fh(i-2,k-2) = 
        end
            
         
    end
end
[m1,n1]=size(samvar1)
%create holding image
hol = zeros(m1,n1)
ind1 = find(F>Fnum)
ind2 = find(Fh>Fnum)
hol(ind1)
hol(ind2)
%thin out the edge
hol = bwmorph(hol,'thin',10)
%make egde image the same size as the original
final = zeros(m,n)
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final(3:m-2,3:n-2) = hol

imshow(final),title(['ANOVA Algorithm with Threshold ',num2str(sampoolthresh)],'FontSize',
16,'FontWeight','bold')
% imshow(d),title('Original Image','FontSize',16,'FontWeight','bold')
%figure,imshow(ed1),figure,imshow(ed2),figure,imshow(ed3)
 


