

Accurate Rectangular Window Subspace Tracking

Timothy M. Toolan and Donald W. Tufts Department of Electrical Engineering University of Rhode Island

Underwater Acoustic Signal Processing Workshop URI Alton Jones Campus October 6, 2005

• Given a sequence of column vectors \mathbf{x}_t , we can define the $n \times c$ overlapping matrices, M_{old} and \tilde{M}_{new} , along with their SVDs, as

$$M_{old} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_c \end{bmatrix} = U_{old} \Sigma_{old} V_{old}^H$$
$$\tilde{M}_{new} = \begin{bmatrix} \mathbf{x}_2 & \cdots & \mathbf{x}_c & \mathbf{x}_{c+1} \end{bmatrix} = \tilde{U}_{new} \tilde{\Sigma}_{new} \tilde{V}_{new}^H$$

- Using the rank-two secular function, we can determine the singular values and left singular vectors of \tilde{M}_{new} from the singular values and left singular vectors of M_{old} with one $O(n^3)$ matrix product
- Using the IFAST algorithm, we can determine an approximation to the r largest singular values and left singular vectors of \tilde{M}_{new} from the r largest singular values and left singular vectors of M_{old} with one $O(nr^2)$ and two $O(r^3)$ matrix products

- M_{old} , $\tilde{M}_{new} \in \mathbb{C}^{32 \times 32}$
- Similar plot for other matrix dimensions.
- The full decomposition and the secular update produce identical results.
- Offset in IFAST at r = 0comes from O(nc) terms.

- For large r, the dominant term in the IFAST computation is an $r+2 \times r+2$ eigendecomposition.
- All methods calculate singular values and left singular vectors only.

 $\bullet\,$ If we define the two vectors ${\bf a}$ and ${\bf b},$

$$\mathbf{a} = U_{old}^H \mathbf{x}_1, \qquad \mathbf{b} = U_{old}^H \mathbf{x}_{c+1}$$

then we can define the matrix $ilde{G}$ as

$$\tilde{G} = U_{old}^H \tilde{M}_{new} \tilde{M}_{new}^H U_{old} = \Sigma_{old}^2 - \mathbf{a}\mathbf{a}^H + \mathbf{b}\mathbf{b}^H$$

which is a diagonal matrix plus two rank one matrices.

• If we write the eigendecomposition of \tilde{G} as

$$\tilde{G} = \tilde{U}_G \tilde{\Sigma}_G \tilde{U}_G^H$$

then the singular values and left singular vectors of \tilde{M}_{new} are

$$ilde{\Sigma}_{new} = \sqrt{ ilde{\Sigma}_G}$$
 and $ilde{U}_{new} = U_{old} ilde{U}_G$

• The eigenvalues of \tilde{G} are the roots of the rank-two secular equation

$$w(\lambda) = \left(1 - \sum_{j=1}^{n} \frac{|a_j|^2}{\sigma_j^2 - \lambda}\right) \left(1 + \sum_{j=1}^{n} \frac{|\mathbf{b}_j|^2}{\sigma_j^2 - \lambda}\right) + \left|\sum_{j=1}^{n} \frac{a_j^* \mathbf{b}_j}{\sigma_j^2 - \lambda}\right|^2$$
$$w(\lambda) = w_a(\lambda) w_{\mathbf{b}}(\lambda) + |w_{a\mathbf{b}}(\lambda)|^2$$

where $w_a(\lambda)$ is the secular function for $\Sigma_{old}^2 - \mathbf{a}\mathbf{a}^H$, and $w_b(\lambda)$ is the secular function for $\Sigma_{old}^2 + \mathbf{b}\mathbf{b}^H$

• The unnormalized *i*th eigenvector of \tilde{G} is

$$\frac{\tilde{\mathbf{u}}_i}{c_s} = \left(\Sigma_{old}^2 - \tilde{\sigma}_i^2 I\right)^{-1} \left(\mathbf{a} + \frac{w_a(\tilde{\sigma}_i^2)}{w_{ab}(\tilde{\sigma}_i^2)} \mathbf{b}\right)$$

Rank-Two Secular Function

Poles of $w(\lambda)$ are squares of singular values of M_{old} Roots of $w(\lambda)$ and $C(\lambda)$ are squares of singular values of \tilde{M}_{new} Note that each new eigenvalue is bounded by $\sigma_{i+1}^2 < \tilde{\sigma}_i^2 < \sigma_{i-1}^2$

- M_{old} shares all but one column with \tilde{M}_{new} , therefore U'_{old} is a reasonable approximation to the columnspace of \tilde{U}'_{new} , except for the contribution of \mathbf{x}_1 and \mathbf{x}_{c+1}
- If we define q_1 and q_2 as a Gram-Schmidt augmentation to U'_{old} ,

$$\mathbf{z}_{1} = (I - U'_{old} U'_{old}^{H}) \mathbf{x}_{c+1}, \qquad \mathbf{q}_{1} = \mathbf{z}_{1} / \|\mathbf{z}_{1}\|, \\ \mathbf{z}_{2} = (I - [U'_{old} | \mathbf{q}_{1}] [U'_{old} | \mathbf{q}_{1}]^{H}) \mathbf{x}_{1}, \qquad \mathbf{q}_{2} = \mathbf{z}_{2} / \|\mathbf{z}_{2}\|,$$

then we can define

$$\tilde{M}'_{new} = [U'_{old} \mid Q] [U'_{old} \mid Q]^H \tilde{M}_{new}$$

The *r* largest singular values and left singular vectors of the rank r + 2 matrix \tilde{M}'_{new} , are reasonable approximations to the *r* largest singular values and left singular vectors of \tilde{M}_{new}

• Substituting \tilde{M}'_{new} for \tilde{M}_{new} is the only approximation in IFAST

Step		Description
1)	$\begin{aligned} \mathbf{z}_{1} &= \left(I - U_{old}^{\prime} U_{old}^{\prime H}\right) \mathbf{x}_{c+1} \\ \mathbf{q}_{1} &= \mathbf{z}_{1} / \ \mathbf{z}_{1}\ \\ \mathbf{z}_{2} &= \left(I - \left[U_{old}^{\prime} \mid \mathbf{q}_{1}\right] \left[U_{old}^{\prime} \mid \mathbf{q}_{1}\right]^{H}\right) \mathbf{x}_{1} \\ \mathbf{q}_{2} &= \mathbf{z}_{2} / \ \mathbf{z}_{2}\ \end{aligned}$	Gram-Schmidt augment U'_{old} with the column we are dis- carding, \mathbf{x}_1 , and the column we are adding, \mathbf{x}_{c+1} , to create the matrix $Q = [\mathbf{q}_1 \ \mathbf{q}_2]$, where $[U'_{old} Q]^H [U'_{old} Q] = I$
2)	$\begin{split} \tilde{D} &= \Sigma_{old}^{\prime 2} - U_{old}^{\prime H} \mathbf{x}_{1} \mathbf{x}_{1}^{H} U_{old}^{\prime} + U_{old}^{\prime H} \mathbf{x}_{c+1} \mathbf{x}_{c+1}^{H} U_{old}^{\prime} \\ \tilde{F} &= \begin{bmatrix} \tilde{D} & U_{old}^{\prime H} \tilde{M}_{new} \tilde{M}_{new}^{H} Q \\ \hline Q^{H} \tilde{M}_{new} \tilde{M}_{new}^{H} U_{old}^{\prime} & Q^{H} \tilde{M}_{new} \tilde{M}_{new}^{H} Q \end{bmatrix} \end{split}$	Create \tilde{F} , whose eigendecomposition will give us the SVD of \tilde{M}'_{new} . Equivalent to $\tilde{F} = [U'_{old} Q]^H \tilde{M}_{new} \tilde{M}^H_{new} [U'_{old} Q]$
3)	$\tilde{U}_f \tilde{\Sigma}_f \tilde{U}_f^H = \tilde{F}$	Take eigendecomposition of $ ilde{F}$
4)	$ \begin{split} \tilde{U}_{new}' &= \begin{bmatrix} U_{old}' \mid Q \end{bmatrix} \tilde{U}_{f} \\ \tilde{\Sigma}_{new}'^{2} &= \tilde{\Sigma}_{f} \end{split} $	Determine the singular values and left singular vectors of \tilde{M}'_{new}

IFAST Performance

- Given $U_{\!old}$ and Σ_{old} from M_{old} , and defining like before

 $\mathbf{a} = U_{old}^{H} \mathbf{x}_{1}, \qquad \mathbf{b} = U_{old}^{H} \mathbf{x}_{c+1}$ the matrix $\tilde{G} = U_{old}^{H} \tilde{M}_{new} \tilde{M}_{new}^{H} U_{old}$, can be written as $\tilde{G} = \Sigma_{old}^{2} - \mathbf{a}\mathbf{a}^{H} + \mathbf{b}\mathbf{b}^{H}$

• Given U'_{old} and Σ'_{old} from M_{old} , and defining $\hat{\Sigma} = Q^H M_{old} M_{old}{}^H Q$, $\hat{\mathbf{a}} = Q^H \mathbf{x}_1$, $\hat{\mathbf{b}} = Q^H \mathbf{x}_{c+1}$ the matrix $\tilde{F} = [U'_{old} Q]^H \tilde{M}_{new} \tilde{M}^H_{new} [U'_{old} Q]$, can be written as

$$\tilde{F} = \begin{bmatrix} \frac{\Sigma_{old}^{\prime 2} \mid 0}{0 \mid \hat{\Sigma}} \end{bmatrix} - \begin{bmatrix} \frac{\mathbf{a}^{\prime}}{\hat{\mathbf{a}}} \end{bmatrix} \begin{bmatrix} \frac{\mathbf{a}^{\prime}}{\hat{\mathbf{a}}} \end{bmatrix}^{H} + \begin{bmatrix} \frac{\mathbf{b}^{\prime}}{\hat{\mathbf{b}}} \end{bmatrix} \begin{bmatrix} \frac{\mathbf{b}^{\prime}}{\hat{\mathbf{b}}} \end{bmatrix}^{H}$$

• We can now use their rank-two secular functions for comparison

Comparison of Secular Functions

- The rank-two secular function is the product of the two rank-one secular functions plus a cross term, $w(\lambda) = w_a(\lambda)w_b(\lambda) + |w_{ab}(\lambda)|^2$
- We can define the difference of the rank one secular function of $\tilde{G}_b = \Sigma_{old}^2 + \mathbf{bb}^H$ and \tilde{F}_b as

$$e_{f_b}(\lambda) = w_{f_b}(\lambda) - w_{g_b}(\lambda)$$

and the unique parts of $w_{\textit{f}_{\textit{b}}}(\lambda)$ and $w_{\textit{g}_{\textit{b}}}(\lambda)$ as

$$u_{\underline{g}_{b}}(\lambda) = -\sum_{j=r+1}^{n} \frac{|\underline{b}_{j}|^{2}}{\lambda} \sum_{i=2}^{\infty} \left(\frac{\sigma_{j}^{2}}{\lambda}\right)^{i}, \qquad u_{\underline{f}_{b}}(\lambda) = -\sum_{j=1}^{2} \frac{|\hat{\underline{b}}_{j}|^{2}}{\lambda} \sum_{i=2}^{\infty} \left(\frac{\hat{\sigma}_{j}}{\lambda}\right)^{i}$$

The three functions e_{fb}(λ), u_{gb}(λ), and u_{fb}(λ) are all about the same magnitude in the region of λ that we are interested in, therefore u_{fb}(λ) can be used to give an idea of the error in the approximation

- IFAST Algorithm Singular value and left singular vector estimates in $O(nr^2)$ time. Improved the computational efficiency, accuracy, and flexibility of the FAST algorithm.
- Secular Method Method to find eigendecomposition of a diagonal matrix plus two rank one matrices in $O(n^2)$ time, and update the singular values and left singular vectors of a matrix where one column changes with a single $O(n^3)$ matrix product.
- IFAST Analysis Show how to use rank-two secular function to analyze accuracy of IFAST algorithm. This gives some insight into where IFAST is applicable.