

Improved Fast Adaptive Subspace Tracking

Timothy M. Toolan and Donald W. Tufts Department of Electrical Engineering University of Rhode Island

Adaptive Sensor and Array Processing Workshop MIT Lincoln Laboratory June 7, 2005

• Given a sequence of length n column vectors \boldsymbol{x}_t , for $t = 1, 2, \cdots$, we can define the $n \times c$ matrices M and \tilde{M} as

$$M = \begin{bmatrix} \boldsymbol{x}_{t-c} \ \boldsymbol{x}_{t-c+1} \ \cdots \ \boldsymbol{x}_{t-1} \end{bmatrix}$$
$$\tilde{M} = \begin{bmatrix} \boldsymbol{x}_{t-c+1} \ \cdots \ \boldsymbol{x}_{t-1} \ \boldsymbol{x}_t \end{bmatrix}$$

- Assuming we have
 - Σ' the *r* largest singular values of *M*
 - $U^\prime~-~$ the corresponding left singular vectors of M

we would like to determine

- $\tilde{\Sigma}'$ the *r* largest singular values of \tilde{M}
- $ilde{U}'$ the corresponding left singular vectors of $ilde{M}$

without performing a full SVD on \tilde{M} .

1)
$$\boldsymbol{q}_1 = rac{\left(I - U'U'^H\right) \boldsymbol{x}_{t-c}}{\|(I - U'U'^H) \, \boldsymbol{x}_{t-c}\|}$$

2)
$$\boldsymbol{q}_2 = \frac{\left(I - [U' \ \boldsymbol{q}_1][U' \ \boldsymbol{q}_1]^H\right) \boldsymbol{x}_t}{\|(I - [U' \ \boldsymbol{q}_1][U' \ \boldsymbol{q}_1]^H) \boldsymbol{x}_t\|}$$

$$\mathbf{3)} \quad \tilde{F} = [U' \ Q]^H \tilde{M} \tilde{M}^H [U' \ Q]$$

$$4) \quad U_F \Sigma_F U_F^H = \tilde{F}$$

5)
$$\begin{split} \tilde{U}' &= [U' \ Q] U_F \\ \tilde{\Sigma}' &= \sqrt{\Sigma_F} \end{split}$$

The columns of the new matrix \tilde{M} , can be well approximated by projecting them onto the r + 2 dimensional subspace which has an orthogonal basis consisting of the r columns of U' Gram-Schmidt augmented by q_1 and q_2 .

After projecting the columns of \tilde{M} onto this r + 2 dimensional subspace, we perform a small r + 2 dimensional SVD to obtain a good r-dimensional approximation subspace.

• Computing \tilde{F} directly in step 3 is computationally costly because \tilde{M} is an $n \times c$ matrix, and U' is an $n \times r$ matrix U' is U' = 2

• We can write
$$\tilde{F}$$
 as

$$\tilde{F} = \begin{bmatrix} \tilde{F}_c & |U'^H \tilde{M} \tilde{M}^H Q \\ \hline Q^H \tilde{M} \tilde{M}^H U' & |Q^H \tilde{M} \tilde{M}^H Q \end{bmatrix} \xrightarrow{\tilde{V}_0} \underbrace{10}_{r, \text{ subspace dimension}} \underbrace{10}_{r, \text{ subspac$$

where the $r \times r$ matrix $\tilde{F}_c = U'^H \tilde{M} \tilde{M}^H U'$ is

$$\tilde{F}_c = \Sigma'^2 - U'^H \boldsymbol{x}_{t-c} \boldsymbol{x}_{t-c}^H U' + U'^H \boldsymbol{x}_t \boldsymbol{x}_t^H U'$$

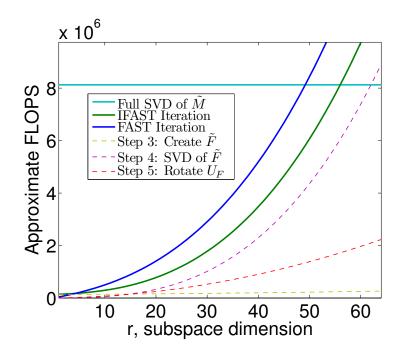
which is the sum of a diagonal matrix plus two rank one matrices.

University of Rhode Island

Step 3: Direct method Step 3: Efficient method

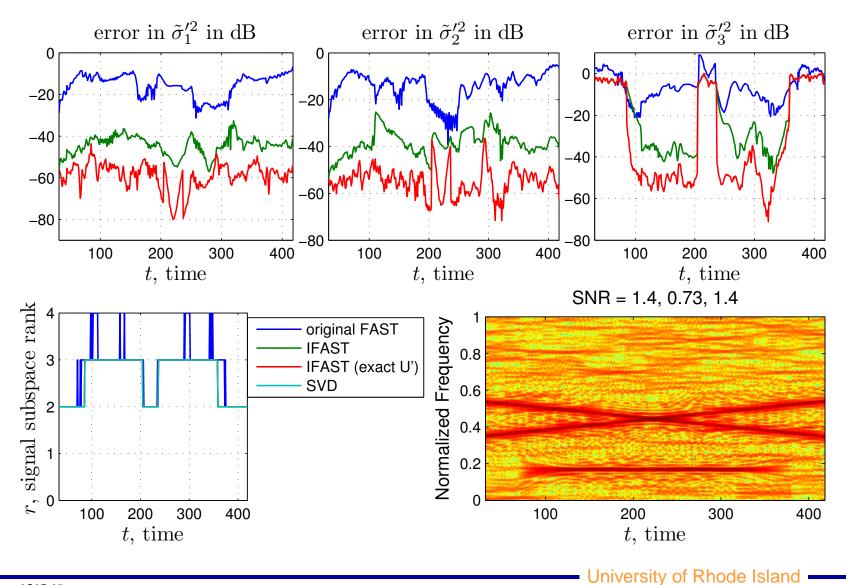
Computation

- n = c = 64, complex data
- Similar plot for other matrix dimensions
- Step 3 (O(32nc) creation of \tilde{F}) dominates for r < 15
- Step 4 ($O(31r^3)$ SVD of \tilde{F}) dominates for r > 15
- Step 5 ($O(8nr^2)$ rotation of U_F) similar to step 4 for r < 15



• When the equivalent of \tilde{F} for FAST is computed similarly to how it is done in IFAST, their computation is about the same.

Accuracy



ASAP-05

Key Points:

- Accurate estimates of r largest singular values and corresponding left singular vectors
- Computational complexity of $O(nr^2)$
- No initial SVD required, can start with a single vector and grow M by making Q only one column

Additional Points:

- Robust to truncating r due to computational limitations
- Error in singular values proportional to error in angle for corresponding singular vector

• Given the SVD of $M = U\Sigma V^H$, and defining

$$\boldsymbol{a} = U^H \boldsymbol{x}_{t-c}, \qquad \boldsymbol{b} = U^H \boldsymbol{x}_t$$

we can write

$$\tilde{\boldsymbol{G}} = \boldsymbol{U}^{H} \tilde{\boldsymbol{M}} \tilde{\boldsymbol{M}}^{H} \boldsymbol{U} = \boldsymbol{\Sigma}^{2} - \boldsymbol{a} \boldsymbol{a}^{H} + \boldsymbol{b} \boldsymbol{b}^{H}$$

which is a diagonal matrix plus two rank one matrices.

• The eigenvalues of \tilde{G} , which are the squares of the singular values of \tilde{M} , are the roots of the rank-two secular equation

$$w(\boldsymbol{\lambda}) = \left(1 - \sum_{j=1}^{n} \frac{|a_j|^2}{\sigma_j^2 - \boldsymbol{\lambda}}\right) \left(1 + \sum_{j=1}^{n} \frac{|\boldsymbol{b}_j|^2}{\sigma_j^2 - \boldsymbol{\lambda}}\right) + \left|\sum_{j=1}^{n} \frac{a_j^* \boldsymbol{b}_j}{\sigma_j^2 - \boldsymbol{\lambda}}\right|^2$$

• If we separate M into an r dimensional principal subspace, and the orthogonal c - r dimensional one

$$M = \begin{bmatrix} U' & U^{\perp} \end{bmatrix} \begin{bmatrix} \Sigma' & 0 \\ 0 & \Sigma^{\perp} \end{bmatrix} \begin{bmatrix} V' & V^{\perp} \end{bmatrix}^{H}$$

• The eigenvalues values of $\tilde{G}' = U'^H \tilde{M} \tilde{M}^H U'$ are the roots of the rank-two secular equation

$$w'(\boldsymbol{\lambda}) = \left(1 - \sum_{j=1}^{r} \frac{|a_j|^2}{\sigma_j^2 - \boldsymbol{\lambda}}\right) \left(1 + \sum_{j=1}^{r} \frac{|\boldsymbol{b}_j|^2}{\sigma_j^2 - \boldsymbol{\lambda}}\right) + \left|\sum_{j=1}^{r} \frac{a_j^* \boldsymbol{b}_j}{\sigma_j^2 - \boldsymbol{\lambda}}\right|^2$$

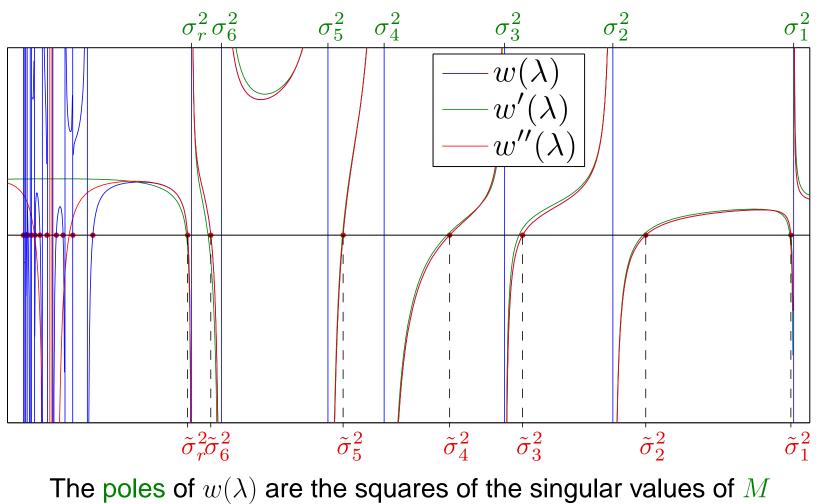
which differs from the full secular equation only by the upper limit of the summation.

- Rotate the two columns of Q from steps one and two of the IFAST algorithm such that $\hat{\Sigma} = Q^H M M^H Q$ is diagonal
- Assume that U' is not an approximation, therefore $U'^H \tilde{M} \tilde{M}^H Q$ equals $\Sigma'^2 U'^H Q$, which must be zero
- The secular equation for $\tilde{F} = [U' Q]^H \tilde{M} \tilde{M}^H [U' Q]$, which we will call $w''(\lambda)$, is $w'(\lambda)$ with two additional terms in each summation

$$-\sum_{j=1}^{2} \frac{\left|\boldsymbol{q}_{j}^{H} \boldsymbol{x}_{t-c}\right|^{2}}{\hat{\sigma}_{j} - \boldsymbol{\lambda}}, \qquad \sum_{j=1}^{2} \frac{\left|\boldsymbol{q}_{j}^{H} \boldsymbol{x}_{t}\right|^{2}}{\hat{\sigma}_{j} - \boldsymbol{\lambda}}, \qquad \sum_{j=1}^{2} \frac{\left|\boldsymbol{q}_{j}^{H} \boldsymbol{x}_{t} \boldsymbol{x}_{t-c}^{H} \boldsymbol{q}_{j}\right|^{2}}{\hat{\sigma}_{j} - \boldsymbol{\lambda}}$$

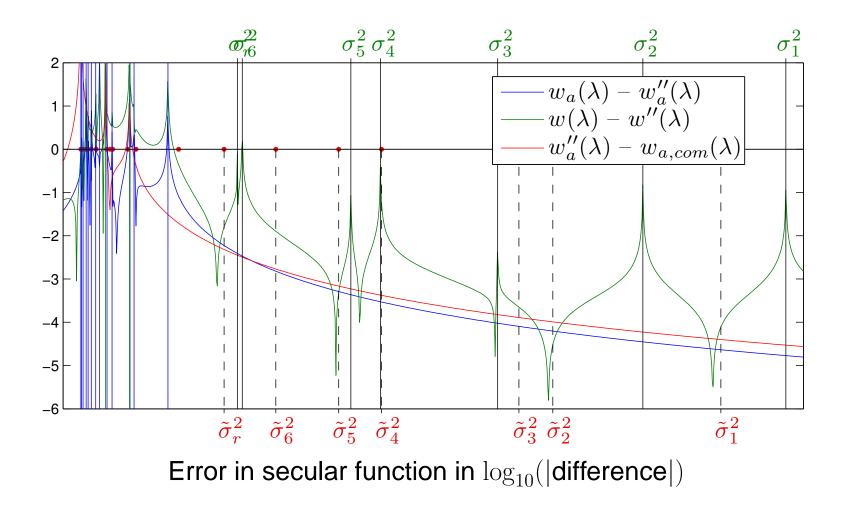
which are equal to the first two terms of binomial expansions of the n-r missing terms of $w(\lambda)$

Rank Two Secular Function



The roots of $w(\lambda)$ are the squares of the singular values of \tilde{M}

Secular Function Differences



Key Points:

- Present the new rank-two secular equation, which is required to analyze the sliding window update eigenproblem
- Comparative analysis of full dimension secular equation with the secular equation for the IFAST algorithm
- Application of these results to show why IFAST has high accuracy

Additional Points:

- Method can be used to analyze any algorithm that can be written as a rank-two (or rank-one) modification to a diagonal matrix
- Can give estimate of error in each singular value estimate