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Sliding Rectangular Window
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• Given a sequence of length n column vectors xt, for t = 1, 2, · · · ,
we can define the n × c matrices M and M̃ as

M = [ xt−c xt−c+1 · · · xt−1 ]

M̃ = [ xt−c+1 · · · xt−1 xt ]

• Assuming we have

Σ′ – the r largest singular values of M
U ′ – the corresponding left singular vectors of M

we would like to determine
Σ̃′ – the r largest singular values of M̃
Ũ ′ – the corresponding left singular vectors of M̃

without performing a full SVD on M̃ .



The IFAST Algorithm
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1) q1 =

(
I − U ′U ′H)

xt−c

‖(I − U ′U ′H) xt−c‖

2) q2 =

(
I − [U ′ q1][U

′ q1]
H
)
xt

‖(I − [U ′ q1][U
′ q1]

H) xt‖

3) F̃ = [U ′ Q]HM̃M̃H [U ′ Q]

4) UFΣFUH
F = F̃

5)
Ũ ′ = [U ′ Q]UF

Σ̃′ =
√

ΣF

The columns of the new matrix
M̃ , can be well approximated by
projecting them onto the r + 2

dimensional subspace which
has an orthogonal basis
consisting of the r columns of U ′

Gram-Schmidt augmented by q1

and q2.
After projecting the columns of
M̃ onto this r + 2 dimensional
subspace, we perform a small
r + 2 dimensional SVD to obtain
a good r-dimensional
approximation subspace.



Efficiently Computing F̃
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• Computing F̃ directly in step 3 is
computationally costly because
M̃ is an n × c matrix, and U ′ is
an n × r matrix

• We can write F̃ as

F̃ =

[
F̃c U ′HM̃M̃HQ

QHM̃M̃HU ′ QHM̃M̃HQ

]
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Step 3: Direct method
Step 3: Efficient method

where the r × r matrix F̃c = U ′HM̃M̃HU ′ is

F̃c = Σ′2 − U ′Hxt−cx
H
t−cU

′ + U ′Hxtx
H
t U ′

which is the sum of a diagonal matrix plus two rank one matrices.



Computation
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• n = c = 64, complex data

• Similar plot for other matrix
dimensions

• Step 3 (O(32nc) creation of F̃ )
dominates for r < 15

• Step 4 (O(31r3) SVD of F̃ )
dominates for r > 15

• Step 5 (O(8nr2) rotation of UF )
similar to step 4 for r < 15
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Full SVD of M̃
IFAST Iteration
FAST Iteration
Step 3: Create F̃
Step 4: SVD of F̃
Step 5: Rotate UF

• When the equivalent of F̃ for FAST is computed similarly to how it
is done in IFAST, their computation is about the same.



Accuracy
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IFAST Summary
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Key Points:

• Accurate estimates of r largest singular values and
corresponding left singular vectors

• Computational complexity of O(nr2)

• No initial SVD required, can start with a single vector and grow M

by making Q only one column

Additional Points:

• Robust to truncating r due to computational limitations

• Error in singular values proportional to error in angle for
corresponding singular vector



Rectangular Window Update
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• Given the SVD of M = UΣV H, and defining

a = UHxt−c, b = UHxt

we can write

G̃ = UHM̃M̃HU = Σ2 − aaH + bbH

which is a diagonal matrix plus two rank one matrices.

• The eigenvalues of G̃, which are the squares of the singular
values of M̃ , are the roots of the rank-two secular equation

w(λ) =

1 −
n∑

j=1

|aj|2

σ2
j − λ

 1 +

n∑
j=1

|bj|2

σ2
j − λ

 +

∣∣∣∣∣∣
n∑

j=1

a∗jbj

σ2
j − λ

∣∣∣∣∣∣
2



Reduced Rank Approximation
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• If we separate M into an r dimensional principal subspace, and
the orthogonal c − r dimensional one

M =
[
U ′ U⊥] [

Σ′ 0
0 Σ⊥

] [
V ′ V ⊥]H

• The eigenvalues values of G̃′ = U ′HM̃M̃HU ′ are the roots of the
rank-two secular equation

w′(λ) =

1 −
r∑

j=1

|aj|2

σ2
j − λ

 1 +

r∑
j=1

|bj|2

σ2
j − λ

 +

∣∣∣∣∣∣
r∑

j=1

a∗jbj

σ2
j − λ

∣∣∣∣∣∣
2

which differs from the full secular equation only by the upper limit
of the summation.



IFAST Approximation
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• Rotate the two columns of Q from steps one and two of the
IFAST algorithm such that Σ̂ = QHMMHQ is diagonal

• Assume that U ′ is not an approximation, therefore U ′HM̃M̃HQ

equals Σ′2U ′HQ, which must be zero

• The secular equation for F̃ = [U ′ Q]HM̃M̃H [U ′ Q], which we will
call w′′(λ), is w′(λ) with two additional terms in each summation

−
2∑

j=1

∣∣qH
j xt−c

∣∣2
σ̂j − λ

,
2∑

j=1

∣∣qH
j xt

∣∣2
σ̂j − λ

,
2∑

j=1

qH
j xtx

H
t−cqj

σ̂j − λ

which are equal to the first two terms of binomial expansions of
the n − r missing terms of w(λ)



Rank Two Secular Function
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The poles of w(λ) are the squares of the singular values of M
The roots of w(λ) are the squares of the singular values of M̃



Secular Function Differences

University of Rhode Island

12

ASAP-05

−6

−5

−4

−3

−2

−1

0

1

2
σ2

1

σ̃2
1

σ2
2

σ̃2
2

σ2
3

σ̃2
3

σ2
4

σ̃2
4

σ2
5

σ̃2
5

σ2
6

σ̃2
6

σ2
r

σ̃2
r

wa(λ) – w′′a(λ)
w(λ) – w′′(λ)
w′′a(λ) – wa,com(λ)

Error in secular function in log10(|difference|)



Analysis Summary
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Key Points:

• Present the new rank-two secular equation, which is required to
analyze the sliding window update eigenproblem

• Comparative analysis of full dimension secular equation with the
secular equation for the IFAST algorithm

• Application of these results to show why IFAST has high accuracy

Additional Points:

• Method can be used to analyze any algorithm that can be written
as a rank-two (or rank-one) modification to a diagonal matrix

• Can give estimate of error in each singular value estimate


