\documentclass{urislides} \usepackage{amsmath} % easy way to use bold math in equation %\def\bvec#1{\boldsymbol{#1}} \def\bvec#1{#1} % Beginning of document ****************************************** \begin{document} \tinycaption{present.tex/aj02} \begin{titlepage} \begin{center} {\LARGE \color{red} Important Scientific Presentation} \end{center} \vspace*{1.0in} \begin{center} Jonathan Doe \\[0.5in] \small Department of Electrical Engineering \\ \small University of Rhode Island \end{center} \end{titlepage} \begin{slide} \slidetitle{The Initial Data Set} \begin{itemize} \item Matrix \(\bvec{M}_t\) contains $c$ column vectors, \(\bvec{m}_{1}\) through \(\bvec{m}_{c}\). \begin{eqnarray*} \begin{array}{cccccccc} \bvec{M}_{t} & = & [ & \bvec{m}_{1} & \bvec{m}_{2} & \ldots & \bvec{m}_{c} & ] \\ \end{array} \end{eqnarray*} \item Taking the SVD of \(\bvec{M}_t\) gives us \begin{displaymath} \bvec{M}_{t} = [ \bvec{\hat{U}}_{t} \hspace{10pt} \bvec{\tilde{U}}_{t} ] \left[ \begin{array}{cc} \bvec{\hat{\Sigma}}_{t} & \bvec{0} \\ \bvec{0} & \bvec{\tilde{\Sigma}}_{t} \end{array} \right] [ \bvec{\hat{V}}_{t} \hspace{10pt} \bvec{\tilde{V}}_{t} ]^H \end{displaymath} where \(\bvec{\hat{U}}_{t}\) contains the $k$ left singular vectors of \(\bvec{M}_t\) corresponding to its largest singular values, which are the orthonormal basis vectors of the desired subspace. \end{itemize} \end{slide} \begin{slide} \slidetitle{The First Iteration} \begin{itemize} \item Now we create the next matrix \(\bvec{M}_{t+1}\) using the columns of \(\bvec{M}_t\), discarding \(\bvec{m}_{1}\) and using the new column \(\bvec{m}_{c+1}\). \begin{eqnarray*} \begin{array}{cccccccccc} \bvec{M}_{t+1} & = & [ & \bvec{m}_{2} & \bvec{m}_{3} & \ldots & \bvec{m}_{c} & \bvec{m}_{c+1} & ] \\ \end{array} \end{eqnarray*} {\color{white} \item What we want are \(\bvec{\hat{U}}_{t+1}\) and \(\bvec{\hat{\Sigma}}_{t+1}\) where \begin{displaymath} \bvec{M}_{t+1} = [ \bvec{\hat{U}}_{t+1} \hspace{10pt} \bvec{\tilde{U}}_{t+1} ] \left[ \begin{array}{cc} \bvec{\hat{\Sigma}}_{t+1} & \bvec{0} \\ \bvec{0} & \bvec{\tilde{\Sigma}}_{t+1} \end{array} \right] [ \bvec{\hat{V}}_{t+1} \hspace{10pt} \bvec{\tilde{V}}_{t+1} ]^H \end{displaymath} } \end{itemize} \end{slide} \begin{overlay} \begin{itemize} \item Now we create the next matrix \(\bvec{M}_{t+1}\) using the columns of \(\bvec{M}_t\), discarding \(\bvec{m}_{1}\) and using the new column \(\bvec{m}_{c+1}\). \begin{eqnarray*} \begin{array}{cccccccccc} \bvec{M}_{t+1} & = & [ & \bvec{m}_{2} & \bvec{m}_{3} & \ldots & \bvec{m}_{c} & \bvec{m}_{c+1} & ] \\ \end{array} \end{eqnarray*} {\color{black} \item What we want are \(\bvec{\hat{U}}_{t+1}\) and \(\bvec{\hat{\Sigma}}_{t+1}\) where \begin{displaymath} \bvec{M}_{t+1} = [ \bvec{\hat{U}}_{t+1} \hspace{10pt} \bvec{\tilde{U}}_{t+1} ] \left[ \begin{array}{cc} \bvec{\hat{\Sigma}}_{t+1} & \bvec{0} \\ \bvec{0} & \bvec{\tilde{\Sigma}}_{t+1} \end{array} \right] [ \bvec{\hat{V}}_{t+1} \hspace{10pt} \bvec{\tilde{V}}_{t+1} ]^H \end{displaymath} } \end{itemize} \end{overlay} \begin{slide} \slidetitle{Multiple Column Update} \begin{itemize} \item More than one column can be added and removed each iteration by adding the portion of all relevant vectors to the orthonormal basis \(\bvec{Q}\). \item The matrix \(\bvec{Q}\) will be of dimension \(r \times k+2n\). \item The algorithm is otherwise unchanged. \end{itemize} \end{slide} \end{document}