Important Scientific Presentation

Jonathan Doe

Department of Electrical Engineering University of Rhode Island

 \bullet Matrix M_t contains c column vectors, m_1 through $m_c.$

$$
M_t = [m_1 \quad m_2 \quad \dots \quad m_c]
$$

 \bullet Taking the SVD of M_t gives us

$$
M_t = [\hat{U}_t \ \tilde{U}_t] \begin{bmatrix} \hat{\Sigma}_t & 0 \\ 0 & \tilde{\Sigma}_t \end{bmatrix} [\hat{V}_t \ \tilde{V}_t]^H
$$

where $\, U \,$ ˆ U_t contains the k left singular vectors of M_t corresponding to its largest singular values, which are the orthonormal basis vectors of the desired subspace.

 \bullet Now we create the next matrix M_{t+1} using the columns of M_t , discarding m_1 and using the new column $m_{c+1}.$

$$
M_{t+1} = [m_2 \ m_3 \ \dots \ m_c \ m_{c+1}]
$$

 \bullet Now we create the next matrix M_{t+1} using the columns of M_t , discarding m_1 and using the new column $m_{c+1}.$

$$
M_{t+1} = [m_2 \ m_3 \ \dots \ m_c \ m_{c+1}]
$$

 $\bullet\,$ What we want are U ˆ $t{+}1$ and $\widehat{\bf \Sigma}$ $_{t+1}$ where

$$
M_{t+1} = [\tilde{U}_{t+1} \ \tilde{U}_{t+1}] \begin{bmatrix} \hat{\Sigma}_{t+1} & 0 \\ 0 & \tilde{\Sigma}_{t+1} \end{bmatrix} [\tilde{V}_{t+1} \ \tilde{V}_{t+1}]^H
$$

WAREE CONTENSITY OF Rhode Island

present.tex/aj02

- More than one column can be added and removed each iteration by adding the portion of all relevant vectors to the orthonormal basis $Q.$
- $\bullet\,$ The matrix Q will be of dimension $r\times k+2n.$
- The algorithm is otherwise unchanged.