Important Scientific Presentation

Jonathan Doe

Department of Electrical Engineering University of Rhode Island

• Matrix M_t contains c column vectors, m_1 through m_c .

$$M_t = [m_1 \ m_2 \ \dots \ m_c]$$

• Taking the SVD of M_t gives us

$$M_t = \begin{bmatrix} \hat{U}_t & \tilde{U}_t \end{bmatrix} \begin{bmatrix} \hat{\Sigma}_t & 0 \\ 0 & \tilde{\Sigma}_t \end{bmatrix} \begin{bmatrix} \hat{V}_t & \tilde{V}_t \end{bmatrix}^H$$

where \hat{U}_t contains the k left singular vectors of M_t corresponding to its largest singular values, which are the orthonormal basis vectors of the desired subspace.

• Now we create the next matrix M_{t+1} using the columns of M_t , discarding m_1 and using the new column m_{c+1} .

$$M_{t+1} = [m_2 \ m_3 \ \dots \ m_c \ m_{c+1}]$$

• Now we create the next matrix M_{t+1} using the columns of M_t , discarding m_1 and using the new column m_{c+1} .

$$M_{t+1} = [m_2 \ m_3 \ \dots \ m_c \ m_{c+1}]$$

• What we want are \widehat{U}_{t+1} and $\widehat{\Sigma}_{t+1}$ where

$$M_{t+1} = \begin{bmatrix} \hat{U}_{t+1} & \tilde{U}_{t+1} \end{bmatrix} \begin{bmatrix} \hat{\Sigma}_{t+1} & 0 \\ 0 & \tilde{\Sigma}_{t+1} \end{bmatrix} \begin{bmatrix} \hat{V}_{t+1} & \tilde{V}_{t+1} \end{bmatrix}^H$$

——— University of Rhode Island

- More than one column can be added and removed each iteration by adding the portion of all relevant vectors to the orthonormal basis Q.
- The matrix Q will be of dimension $r \times k + 2n$.
- The algorithm is otherwise unchanged.