

• Matrix M_t contains c column vectors, m_1 through m_c .

$$M_t = [m_1 \ m_2 \ \dots \ m_c]$$

• Taking the SVD of M_t gives us

$$M_t = \begin{bmatrix} \hat{U}_t & \tilde{U}_t \end{bmatrix} \begin{bmatrix} \hat{\Sigma}_t & 0 \\ 0 & \tilde{\Sigma}_t \end{bmatrix} \begin{bmatrix} \hat{V}_t & \tilde{V}_t \end{bmatrix}^H$$

where \hat{U}_t contains the k left singular vectors of M_t corresponding to its largest singular values, which are the orthonormal basis vectors of the desired subspace.