
HLBS: A Random Read/Write Distributed
Storage System Based on HDFS

Abstract—Hadoop Distributed File System (HDFS) has gained
in popularity as distributed file system for both enterprise and
academic research purpose because of its high fault-tolerance and
the ability to be deployed upon low-cost hardware. HDFS provides
high throughput access to application data and is suitable
for applications that have large data sets. However, its once-
write-many-read semantics could only be suitable for particular
applications like information retrieval and so on. For someother
kinds of storage applications which need random read/write
interfaces, it may be hard to construct upon HDFS directly. In
order to solve this problem, we have designed/implemented an
open source distributed storage system, in which a wrapping
layer is implemented upon HDFS borrowing the idea of Log-
structured File System (LFS) without changing the source codes of
HDFS, which is named Hadoop distributed file system based Log-
structured Block storage System (HLBS). HLBS could not only
support read/write randomly but also some useful features like
snapshot, block compression and so on. We have also integrated
HLBS into XEN, Network Block Device, QEMU, Openstack,
Libvirt and iSCSI to widen its application scenarios. Experiments
show that the write performance of HLBS is close to HDFS.
However, the small read performance of HLBS is better than
HDFS and the large read is almost the same. Experiments
also indicate that the I/O performance of HLBS is better than
Sheepdog storage system. According to our knowledge, prior
published work does no jobs to support read/write randomly
upon HDFS without changing the source codes of HDFS.

I. I NTRODUCTION

With the continuous increasing of computing and data stor-
age requirements, traditional distributed system architectures
have changed in last decade very much. To enable high
reliability, availability and scalability storage of hugeamount
of data upon lower cost hardware, Apache organization has
developed a new open source distributed file systemHadoop
Distributed File System[1], which borrows the idea from
Google File System[2]. Since HDFS is published, it has been
adopted in lots of commercial and academic systems. However,
HDFS only provides once-write-many-read semantics so that
applications requiring random read/write semantics couldnot
run upon HDFS. One typical example is back-end storage
system for virtual machine like [3].

For these kinds of applications, local file systems could
not provide enough space, high reliability, availability and
scalability. To solve this problem, many projects have been
launched. For instance, Amazon has developed a commercial
system named Elastic Block Storage [4], which could be
applied for applications including virtual machine back-end
storage. The laboratory ofNTT Corporation (Nippon Telegraph
and Telephone Corporation)in Japan has developed Sheepdog
system, which is an open source back-end storage system
designed especially for QEMU/KVM [5], [6] virtual machine.
Random read/write data access semantics are supported in
these systems.

Compared with above projects, we propose a different
approach to solve the problem. In our solution, we implement
a new open source back-end storage system which provides
random read/write data access semantics based on HDFS not
requiring to modify the source codes of HDFS with the idea
of Log-structured File System. For this reason, we name our
system asHdfs based Log-structured Block storage System. To
achieve high reliability and availability of HLBS, we imple-
ment linear and tree snapshot subsystem based on the natural
ability of LFS [7]. To save storage space, we support block-
level compression and garbage collection mechanisms [8].
To improve I/O performance, we implement HLBS cache
mechanism. We have also developed HLBS drivers to support
XEN [9], Network Block Device (NBD)[10], QEMU/KVM,
Openstack[11], Libvirt [12] andiSCSI[13] so that it could be
convenient to use HLBS upon these famous software.

The rest of the paper is organized as follows. We present the
design and implementation in Section II and show evaluation
results in Section III. Section IV surveys related work and
Section VI summarizes our conclusions.

II. D ESIGN AND IMPLEMENTATION

In order to design and implement an effective distributed
back-end storage system based on Hadoop Distributed File
System for virtual machine, we propose Hdfs based Log-
structured Block storage System which could not only provide
random read/write access semantics but also realize some
useful features which inherit from the advantages of HDFS
and Log-structured File System.

HLBS is designed and implemented with a subset of
Portable Operating System Interface Of Unix (POSIX)to make
the system more compact, more flexibility and have lower
performance cost. To ease the complexity of debugging and
deploying HLBS, we design and implement HLBS in user
space. Figure 1 shows the whole structure of HLBS.

Fig. 1: Layout of HLBS

HLBS structure is shown in Fig. 1 and it has two modes
which are HDFS mode and local mode. HDFS mode is



designed to provide scalable storage space for applications
requiring large amount of storage space. For this mode, it also
provides storage service based on the underlying interfaces of
HDFS. Compared with HDFS mode, HLBS could also provide
local mode, which stores segment files in local file systems
especially for system testing and debugging usage.

A. Random Read/Write of HLBS

HLBS supports random file access upon HDFS, which also
has some advanced features like data compression, snapshot,
cache, garbage collection and so on. HLBS data format has no
large differences with common file system, both of which are
made up of indirect block, inode, directory entry and such
structures. In order to simplify implementation, HLBS just
implements one file (one inode) which is split into several
segments that are stored upon HDFS or local file systems.
At anytime, there is only one active (latest) segment file.
The segment file is organized as linear logs. When data is
updated, there would be a new log appended at the end of latest
segment to increase the possibility of sequential movement
of disk head so that it could improve system throughput and
performance. The new produced log includes five fields shown
in Fig. 2. New data blocks are allocated and corresponding
index addresses are updated in inode field so that random
read/write is supported. Dirty data blocks would be recycled
by garbage collector to save more storage space.

Fig. 2: Log Structure of HLBS

Fig. 3: Three Level Index Structure of HLBS

Fig. 2 shows the log structure of HLBS, which contains five
fields.

1) Log Header Field
Log header field describes the information of this log
including log size, log creation time, data block amounts
and so on.

2) Data Block Field
Data block field stores user data.

3) Indirect Block Field (see Fig. 3)
Indirect block field stores the address indexes of data
blocks.

4) Inode Field
Inode field describes the three indexes structure and file
meta-data of HLBS.

5) Inode Map Field
Inode map field describes the inode address and inode
number.

Except data block field, other fields are all meta-data. There-
fore, large data storage is more convenient for LFS. The inode
data structure is shown as follows.

struct inode {
/*data block is 8KB*/
uint64_t length;
/*time of last modification*/
uint64_t mtime;
/*8KB*12=96KB*/
int64_t blocks[12];
/*8KB/8*8KB=8MB*/
int64_t iblock;
/*8K/8*8K/8*8K=8GB*/
int64_t doubly_iblock;
/*8K/8*8K/8*8K/8*8K=8TB */
int64_t triply_iblock;

}__attribute__((packed));

Any update operation would append a log in order seman-
tics. The size of data block could be configured. Indirect blocks
are index data blocks in inode. Every file has an inode so
HLBS has just one inode and one inode map that could be
used to find the inode location in a log. When reading the
latest data, it firstly finds the latest inode map and then get the
latest inode stored at the latest log in active segment file. At
last, the addresses of data blocks in inode could be got from
latest log. Fig. 4 indicates the flowcharts of HLBS read and
write operations.

Fig. 4: HLBS read/write procedure flowchart

In Fig. 4, if HLBS works in HDFS mode, read/write requests
would be delivered to HDFS layer. However, in local mode,
requests would be sent to local file system layer.

B. Typical use case of HLBS

Fig. 5 illustrates a typical architecture of virtual machine
back-end storage system constructed by HLBS. For each
virtual machine, HLBS system is deployed to provide storage
space so that one virtual machine could access 64 bits storage
space at most. The 64 bits storage space of HLBS is split into



Fig. 5: Design Principle of HLBS

segment files that could be accessed with random read/write
semantics. All the segment files are stored into HDFS storage
space pool or local file system. The internal structure of HLBS
could be divided into two parts as follows.

• Log-based Block System (LBS) partimplements the log-
based structure mechanism and takes the role to translate
64-bit linear addresses into segments (since log structure
is too small to manage and recycle so we split storage
space into many segment files), which are managed by
HLBS upon HDFS storage pool or local file system.

• Hook HDFS part realizes HLBS underlying interfaces
which support basic file operations about HDFS storage
pool or local file system.

Fig. 6: Log-Structured Block Storage System

In Fig. 6, we show the architecture of LBS. In LBS, log is
the update unit. When a update operation arrives at LBS, all
data of the update request would be packed into a log. Then
LBS will append the log into the end of the latest segment
file, which is a HLBS file stored in HDFS storage pool or
local file system. If a write operation updates one data block
that has been created in an existing log, LBS will allocate
a new data block and reorganize data between the old data
block and new allocated data block in memory. Meanwhile,
the new data block will be written into a new log and then
LBS updates the corresponding index mapping table, which
replaces old data block address with new data block address.
At last, the new log would be appended into the end of latest
segment file in HLBS. To recycle these invalid blocks, garbage
collection mechanisms have been implemented for HLBS.

Although HLBS solves the once-write-many-read problems
in HDFS, it would consume extra storage space for storing
meta-data in logs. However, with support of the great scal-

ability, performance and lower cost of HDFS and garbage
collection feature of HLBS, this will not be a problem any
more. We also implement a optional block-level compression
feature to save more storage space. In addition, snapshot and
cache features are also supported in HLBS to enhance the
reliability and I/O performance.

C. HLBS snapshot

HLBS has two types of snapshots which are linear snapshot
and tree snapshot. HLBS stores the address of its file inode
in the latest log into a snapshot. With the idea of LFS, each
appended log is a natural linear snapshot. On the contrary,
users could take snapshots with specific names of any time
manually, which is named tree snapshot. When users want to
roll backward or forward to a time point, HLBS locates the
snapshot according to the mapping between the time point and
the snapshot name in each snapshot and then gets out the inode
information to access required data sets. Snapshot featureof
HLBS supports to recover corrupted or mis-operated data by
rollback and forward recovery operations [14]. LFS has natural
snapshot feature because of logs are appended sequentially. We
just need roll backward or forward to the corresponding log
to recover data at that time. In theory, HLBS could recover
data at any time point after HLBS is started. However, it may
not save all the data because of garbage collection. Users are
recommended to mark log that contains important data so that
it would produce a snapshot that is recorded in HLBS tree
snapshot. Fig. 7 and Fig. 8 show linear and tree snapshots
separately. In these two figures, one square represents one
snapshot andTn is a snapshot that is created at timeTn.

Fig. 7: An example of linear snapshot of HLBS

Tree snapshot could be produced at any time point like
Fig. 8.

Fig. 8: An example of tree snapshot of HLBS

Snapshots in Fig. 8 are created in the following order:
1) Initialize HLBS, update online and create 12 snapshots

(T 1-T 12), unmount HLBS.



2) Mount HLBS and rollback to the snapshot ofT 5, update
online sequentially and create 5 snapshots (T 13-T 17),
unmount HLBS.

3) Mount HLBS and rollback to the snapshot ofT 16,
update online sequentially and create 3 snapshots (T 18-
T 20), unmount HLBS.

4) Mount HLBS and rollback to the snapshot ofT 19,
update online sequentially and create 3 snapshots (T 21-
T 23), unmount HLBS.

5) Mount HLBS and rollback to the snapshot ofT 23,
update online sequentially and create 2 snapshots (T 24-
T 25), unmount HLBS.

6) Mount HLBS and rollback to the snapshot ofT 25, up-
date online sequentially and create one snapshots (T 26),
unmount HLBS.

7) Mount HLBS and rollback to the snapshot ofT 14,
update online sequentially and create 2 snapshots (T 27-
T 28), unmount HLBS.

8) Mount HLBS and rollback to the snapshot ofT 8, update
online sequentially and create 2 snapshots (T 29-T 30),
unmount HLBS.

9) Mount HLBS and rollback to the snapshot ofT 3, update
online sequentially and create 4 snapshots (T 31-T 34),
unmount HLBS.

Tree snapshots could not only rollback/forward to any time’s
data sets but also update/take snapshot at any snapshot point
without destroying existing snapshots. Linear snapshot iseasy
to design and implement because it is in chronological order,
which is natural log. However, tree snapshot has to be designed
and implemented with additional idea. In order to describe tree
snapshot like Fig. 8, each snapshot needs to record its last
snapshot name. Following data structure gives a simple model
for the idea.

typdef struct snapshot{
char up_ss_name[128];
char ss_name[128];

}SNAPSHOT_T;

In brief, the key points of tree snapshot are how to maintain
the relationship among snapshots and how to get the last
snapshot name when producing a new snapshot. Our current
solution is to record all the snapshot relationship in an external
snapshot file in disk.

HLBS has three start modes with snapshot mechanism as
follows.

• If HLBS starts without a snapshot, it would run based on
the latest log. New snapshot would be added to the next
place of the latest snapshot (likeT 34 in Fig. 8).

• If HLBS starts with a snapshot, it would take a new
branch and update based on this branch (likeT 8 in Fig. 8).
HLBS could get the snapshot according to user specified
snapshot name from HLBS snapshot interface easily.

• If HLBS starts with a log between two continuous snap-
shots, that is to say, it would take a new branch and update
based on this branch (HLBS starts based on a log between
T 8 andT 29 in Fig. 8). HLBS has to get the latest snapshot

name to do next operation.
In order to get the latest snapshot name for above first and

third conditions, HLBS has to maintain an external file to
record the latest alive snapshot name.

D. HLBS Garbage Collection

In order to manage and recycle HLBS storage space, HLBS
storage space is splitted into segments. The size of a segment
could be set according to user configuration. Each segment is
mapped to a HDFS file and the format of segment file name
is segno.seg. Segnois ascending from zero. HLBS has 64-bits
storage space which are divided into two parts to represent
segment number and offset within a segment respectively.

To verify whether a data block is garbage data, HLBS would
get the valid index address of the data block from the latest
log firstly. Then HLBS scans all segments one by one to check
whether the latest address of the data block is the same as the
old one. If they have different address, it says the old data
block is dirty data block because the corresponding address
has been changed.

The segment file could be removed if all the data blocks
in it are dirty. In addition, if there are several data blocksare
available in one segment file, copy and remove mechanism,
copy valuable data blocks into a new log in the end of the
latest segment file from a dirty segment and then remove the
dirty segment, should be adopted. Garbage collection of HLBS
works as following steps.

• Segment usage calculation
During this procedure, HLBS Garbage Collector calcu-
lates the amounts of active data blocks in one segment file
and save the results into a file namedsegmentusage.txt.
There are two ways for segment usage calculation which
are pull mode and push mode. Pull mode would pull
segment files to local file system and then calculate
all active data blocks.Push modewould adopt Hadoop
MapReduce to run segment calculation concurrently.

• Segment recycling
HLBS executes copy-remove or remove operation to recy-
cle a dirty segment if the amount of active data blocks in
one segment is more than a threshold. In order to prevent
the problem of inode modification concurrently, segment
recycling must be finished as a background thread daemon
when there is no I/O request. Garbage collection has to be
executed between two snapshots separately when snapshot
mechanism is enabled.

HLBS supports two types of Garbage collection, which
are on-line and off-line garbage collection.On-line garbage
collection is provided by a daemon thread once HLBS starts.
And off-line garbage collection is executed as an external tool.

III. E VALUATION

In this section, we first present HLBS’s experimental setup.
Then we evaluate the I/O performance among HLBS, HDFS
and Sheepdog [3]. To make experimental results more compa-
rable with other similar storage systems, we also implement
some simple tools [15] to test I/O performance.



A. Experimental Setup

Experiments in this paper are executed upon Linux Kernel
3.2.0-23-generic (Ubuntu Linux version 12.04). In order to
build HLBS, users have to install some dependencies. The core
third part softwares areGLib [16], Snappy[17], Log4c[18] and
so on.GLib is a cross-platform software utility library [16].
Snappyis a fast data compression and decompression library
which is the foundation of HLBS block compression fea-
ture [17]. Log4cis a C-based logging library and all message
logging of HLBS is based on it. HDFS is most important for
HLBS which provides scalable storage pool for HLBS. These
dependencies have to be installed before HLBS is deployed.
Generally, file systems have to be formated correctly before
they could be used. HLBS also needs a format tool and we have
implemented a format tool named ”mkfs.hlfs” for HLBS. The
experimental system should be configured with the following
format command.

mkfs.hlfs -u mode:path -b blocksize -s segmentsize -m storagesystemsize

The mode argument could be set aslocal or hdfs. The
path gives the storage location of HLBS. Theblock sizeand
segmentsize are block and segment size of HLBS whose
unit is byte.storagesystemsize is the maximum size of the
whole HLBS storage space whose unit is megabyte. After
the command is executed, there would produce a file named
superblockwhich records above meta-data of HLBS. The file
would be used when HLBS is initialized. In the following
sections, we would evaluate HLBS and similar storage systems
with different data block size and write size.

B. Comparison with HDFS

In this section, I/O performance of HLBS and HDFS is eval-
uated. In order to compare HLBS with HDFS, two programs
are realized to achieve this goal, which have the same logic
shown in Fig. 9.

Fig. 9: IO performance test tool flowchart

The IO time consumed in Fig. 9 is accurate because the unit
of I/O time is microsecond. The I/O interfaces of HLBS and
HDFS could be configured with different write size so that the
comparison would be more comprehensive. The write and read
experimental results are shown in Table I, Table II , Fig. 10
and Fig. 11.

Parameter HLBS(MB/s) HDFS(MB/s) HLBS/HDFS
BS=8KB, SIZE=500MB 96.60 121.30 79.34%
BS=8KB, SIZE=100MB 81.85 101.02 80.20%
BS=8KB, SIZE=50MB 66.13 70.21 94.19%
BS=8KB, SIZE=30MB 59.57 70.67 84.29%
BS=8KB, SIZE=10MB 34.46 37.79 91.90%
BS=8KB, SIZE=1MB 5.69 14.68 35.71%

TABLE I: Write comparison between HLBS and HDFS
Parameter HLBS(MB/s) HDFS(MB/s) HLBS/HDFS

BS=8KB, SIZE=500MB 103.66 148.40 70.00%
BS=8KB, SIZE=100MB 115.24 138.88 83.33%
BS=8KB, SIZE=50MB 168.97 123.73 136.59%
BS=8KB, SIZE=30MB 143.54 101.50 141.58%
BS=8KB, SIZE=10MB 310.69 75.26 413.33%
BS=8KB, SIZE=1MB 257.00 21.08 1223.80%

TABLE II: Read comparison between HLBS and HDFS

Table I illustrates that when block size is 8KB, HLBS aver-
age write performance could achieve HDFS’s 79.34% 94.29%.
According to Fig. 10, we could also find that HLBS and HDFS
almost have the same write I/O performance between 0 50
megabyte per second. However, HDFS would have better write
performance after 50 megabyte. In Table II and Fig. 11, we
could find read performance of HLBS is much better than
HDFS between 0 100 megabyte. However, HDFS and HLBS
have the same throughput when the read size is more than
100 megabyte. In summary, I/O performance of HLBS could
achieve HDFS’s 79.34% 94.29% around, which we satisfy
these results because we add the random read/write feature
and a new layer upon HDFS.

C. Comparison with Sheepdog

In this section, both the IO efficiency and IO time are
evaluated for HLBS against Sheepdog. Sheepdog is a dis-
tributed storage system for QEMU/KVM, which provides
highly available block level storage volumes that can be
attached to QEMU/KVM virtual machine [3]. Sheepdog is
based on Corosync [19], which would simplify its design and
implementation. However, it would increase Sheepdog’s the
optimization complexity. Meanwhile, HLBS is based on HDFS
which is more popular than Sheepdog’s Corosync. Sheepdog
has no online data migration which limits the availability of
itself.

Table III, Table IV , Fig. 12 and Fig. 13. show the I/O
performance between HLBS and Sheepdog.

From Table III and Fig. 12, we could find that Sheepdog’s

 0

 20

 40

 60

 80

 100

 120

 140

 160

500 100 50 30 10 1

W
ri
te

 b
a
n
d
w

id
th

 (
M

B
/s

)

Write Size (MB) BS = 8KB

HLBS write VS. HDFS write

HLBS Write
HDFS Write

Fig. 10: HLBS write VS. HDFS write



 0

 50

 100

 150

 200

 250

 300

 350

500 100 50 30 10 1

R
e
a
d
 b

a
n
d
w

id
th

 (
M

B
/s

)

Read Size (MB) BS = 8KB

HLBS read VS. HDFS read

HLBS Read
HDFS Read

Fig. 11: HLBS read VS. HDFS read

Parameter HLBS(MB/s) Sheepdog(MB/s)
BS=8KB, SIZE=500MB 96.60 33.33
BS=8KB, SIZE=100MB 81.85 32.62
BS=8KB, SIZE=50MB 66.13 31.89
BS=8KB, SIZE=30MB 59.57 29.65
BS=8KB, SIZE=10MB 34.46 27.90

TABLE III: Write comparison between HLBS and Sheepdog

Parameter HLBS(MB/s) Sheepdog(MB/s)
BS=8KB, SIZE=500MB 103.66 0.91
BS=8KB, SIZE=100MB 115.24 0.95
BS=8KB, SIZE=50MB 168.97 1.06
BS=8KB, SIZE=30MB 143.54 1.06
BS=8KB, SIZE=10MB 310.69 0.99

TABLE IV: Read comparison between HLBS and HDFS

 20

 40

 60

 80

 100

 120

 140

500 100 50 30 10

W
ri
te

 b
a
n
d
w

id
th

 (
M

B
/s

)

Write Size (MB) BS = 8KB

HLBS write VS. Sheepdog write

HLBS Write
Sheepdog Write

Fig. 12: HLBS write VS. Sheepdog write

 0

 50

 100

 150

 200

 250

 300

 350

500 100 50 30 10

R
e
a
d
 b

a
n
d
w

id
th

 (
M

B
/s

)

Read Size (MB) BS = 8KB

HLBS read VS. Sheepdog read

HLBS Read
Sheepdog Read

Fig. 13: HLBS read VS. Sheepdog read

write performance is stable but HLBS has better performance
than Sheepdog. We could also find HLBS has better write
performance when data is larger. Table IV and Fig. 13, indicate
that Sheepdog has a worse read performance. In the same time,
HLBS’s read performance would be better when read size is
lower. In summary, HLBS’s I/O performance is totally better
than Sheepdog.

IV. RELATED WORK

In order to widen HLBS’s application scenarios, we imple-
ment several important patches [20] for HLBS to support many
famous software such asOpenstack[11], network block device
(NBD) [10], Quick EMUlation (QEMU) [5], Libvirt [12],
Internet Small Computer System Interface (iSCSI)[13] and
XEN [21]. Openstackis a cloud computing project to provide
an infrastructure as a service, which has three parts that are
computing, networking and storage [22]. HLBS supports the
Cinder subproject ofOpenstack, which is Openstackblock
storage. After HLBS is supported byOpenstack, Openstack
would have a strong back-end storage that have lots of
advantages to store large data, which is inherited from the
advantages of HLBS.NBD is a block device whose content is
provided by a remote machine.NBD would be a cloud storage
based network block device after HLBS is integrated, which
would have a wider application scenarios.QEMU and XEN
are two types of virtual machine.QEMU and XEN would
support back-end storage system based on HDFS after HLBS
supports them. In addition, the HLBS driver forQEMU and
XEN realizes the separation between storage and computing
so that it would enhance data availability.Libvirt is an open
source application interfaces, daemon and management toolfor
managing platform virtualization. AfterLibvirt is supported by
HLBS, Libvirt users would have the chances to build platform
virtualization based on HLBS.

Log-Structured File System (LFS) is designed to improve
I/O performance and data reliability. For LFS, each write
operation produces a log structure, which should be appended
sequentially when data is updated. The log may contain the
updated data and meta data to maintain the system more
effectively. Since the born of LFS, it has been used under many
conditions. Unfortunately, there would be produced lots of
meta data in Log-Structured File System so garbage collection
would be important in such systems. Meanwhile, there is no
time for disk seek when LFS handles I/O requirements. Hence,
LFS’s performance would be improved in the condition of big
data writing and LFS also has other advantages like natural
snapshot, quick indexing, and so on.

In the future, we would like to integrate HLBS into Google’s
Ganeti [23] project. The source codes of HLBS could be
downloaded from [24].

V. CONCLUSION

HDFS is a distributed, scalable, and portable file system
written in Java for the Hadoop framework. However, it just
supports once-write-many-read semantics. This limits HDFS to
be used in applications requiring random read/write semantics,
such as back-end storage system for virtual machine and so



on. In order to let HDFS support random read and write, we
design and implement an infrastructure software HLBS which
is based on HDFS and realize a log-structured like storage
system [25]. HLBS inherits all the advantages of HDFS and
LFS such as high availability, scalability, fault-tolerance and so
on. HLBS has many wonderful features like snapshot, cache,
garbage collection and block compression. It also supports
many famous softwares including NBD, Openstack, Libvirt,
XEN and so on. The average I/O time of HLBS could achieve
HDFS’s 79.34% 94.29%. Compared with Sheepdog, HLBS not
only provides better I/O performance, but could also support
more application scenarios.

VI. A CKNOWLEDGMENT

We would like to thank developers like Eric Blake at Redhat
and Morita Kazutaka at NTT Lab who help us a lot when we
develop HLBS patches for Libvirt and Sheepdog. Thanks for
some anonymous reviewers for their insightful comments and
detailed suggestions, which have substantially improved the
content and presentation of this paper. We also thank Kang
Hua for his suggestions and help for HLBS. This work is
supported by the Natural Science Foundation of China (Grant
No. 61272123).

REFERENCES
[1] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file

system,” in Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on. IEEE, 2010, pp. 1–10.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google filesystem,” in ACM
SIGOPS Operating Systems Review, vol. 37, no. 5. ACM, 2003, pp. 29–43.

[3] K. Morita, “Sheepdog: Distributed storage system for qemu/kvm,” LCA 2010 DS&R
miniconf, 2010.

[4] S. Hazelhurst, “Scientific computing using virtual high-performance computing: a
case study using the amazon elastic computing cloud,” inProceedings of the 2008
annual research conference of the South African Institute of Computer Scientists
and Information Technologists on IT research in developingcountries: riding the
wave of technology. ACM, 2008, pp. 94–103.

[5] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX Annual
Technical Conference, FREENIX Track, 2005, pp. 41–46.

[6] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the linux virtual
machine monitor,” inProceedings of the Linux Symposium, vol. 1, 2007, pp. 225–
230.

[7] M. Rosenblum and J. K. Ousterhout, “The design and implementation of a log-
structured file system,”ACM Transactions on Computer Systems (TOCS), vol. 10,
no. 1, pp. 26–52, 1992.

[8] “HLBS,” https://code.google.com/p/cloudxy/.
[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

[10] M. Lopez and P. Arturo Garcia Ares, “The network block device,” Linux Journal,
vol. 2000, no. 73es, p. 40, 2000.

[11] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: Toward an open-source
solution for cloud computing.”International Journal of Computer Applications,
vol. 55, 2012.

[12] M. Bolte, M. Sievers, G. Birkenheuer, O. Niehörster, and A. Brinkmann, “Non-
intrusive virtualization management using libvirt,” inProceedings of the Conference
on Design, Automation and Test in Europe. European Design and Automation
Association, 2010, pp. 574–579.

[13] J. Satran and K. Meth, “Internet small computer systemsinterface (iscsi),” 2004.
[14] C. Lijun, L. Zhaoyuan, and J. Weiwei, “A snapshot systembased on cloud storage

log-structured block system.”
[15] “I/O test tools for HLBS, Sheepdog and HDFS.”https://code.google.com/p/hlfs/

wiki/HLFSIOPerformance.
[16] “GLIB,” http://en.wikipedia.org/wiki/Glib.
[17] “Snappy,” http://code.google.com/p/snappy/.
[18] J. Lauret, G. Van Buren, and V. Fine, “Generic logging layer for the distributed

computing.”
[19] “Corosync,”http://corosync.github.io/corosync/.
[20] “HLBS patches for famous software.”http://cloudxy.googlecode.com/svn/

branches/hlfs/ features/multi-file/patches/.
[21] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.Ho, R. Neugebauer,

I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in Proc. of the 19th
ACM symposium on Operating Systems Principles, 2003, pp. 164–177.

[22] M. Mahjoub, A. Mdhaffar, R. B. Halima, and M. Jmaiel, “A comparative study of
the current cloud computing technologies and offers,” inNetwork Cloud Computing
and Applications (NCCA), 2011 First International Symposium on. IEEE, 2011,
pp. 131–134.

[23] G. Trotter, “Ganeti: An open source high-availabilitycluster based on xen.” inLISA,
2007.

[24] “HLBS source codes,”http://cloudxy.googlecode.com/svn/trunk/.
[25] H. Kang., “Hlbs design document.”http://code.google.com/p/cloudxy/wiki/

HlfsDesign, 2012.


