HLBS: A Random Read/Write Distributed
Storage System Based on HDFS

~ Abstract—Hadoop Distributed File System (HDFS) has gained Compared with above projects, we propose a different
in popularity as distributed file system for both enterprise and approach to solve the problem. In our solution, we implement
academic research purpose because of its high fault-tolenae and a new open source back-end storage system which provides

the ability to be deployed upon low-cost hardware. HDFS proides . .
high throughput access to application data and is suitable random read/write data access semantics based on HDFS not

for applications that have large data sets. However, its ores requiring to modify the source codes of HDFS with the idea
write-many-read semantics could only be suitable for parttular of Log-structured File Systentor this reason, we name our
applications like information retrieval and so on. For someother system adddfs based Log-structured Block storage Syst&m
kinds of storage applications which need random read/write achieve high reliability and availability of HLBS, we imple

interfaces, it may be hard to construct upon HDFS directly. h .
order to solve this problem, we have designed/implementedna ment linear and tree snapshot subsystem based on the natural

open source distributed storage system, in which a wrapping ability of LFS [7]. To save storage space, we support block-
layer is implemented upon HDFS borrowing the idea of Log- level compression and garbage collection mechanisms [8].
structured File System (LFS) without changing the source ates of To improve 1/0 performance, we implement HLBS cache
HDFS, which is named Hadoop distributed file system based Leg mechanism. We have also developed HLBS drivers to support

structured Block storage System (HLBS). HLBS could not only .
support read/write randomly but also some useful featuresike XEN [9], Network Block Device (NBDJ10], QEMU/KVM

snapshot, block compression and so on. We have also integeat Openstack11], Libvirt [12] andiSCSI[13] so that it could be
HLBS into XEN, Network Block Device, QEMU, Openstack, convenient to use HLBS upon these famous software.
Libvirt and iSCSI to widen its application scenarios. Expeliments The rest of the paper is organized as follows. We present the

show that the write performance of HLBS is close to HDFS. design and implementation in Section Il and show evaluation

However, the small read performance of HLBS is better than . . -
HDFS and the large read is almost the same. EXpemmmsresults in Section 1ll. Section IV surveys related work and

also indicate that the I/O performance of HLBS is better than S€Ction VI summarizes our conclusions.

Shegpdog storage system. According to our knqwledge, prior Il. DESIGN AND IMPLEMENTATION
published work does no jobs to support read/write randomly . . . L
upon HDFS without changing the source codes of HDFS. In order to design and implement an effective distributed

back-end storage system based on Hadoop Distributed File

])))) System for virtual machine, we propose Hdfs based Log-
With the continuous increasing of computing and data stfzctyred Block storage System which could not only previd

age requirements, traditional distributed system archites 5nqom read/write access semantics but also realize some

have changed in last decade very much. To enable higlq features which inherit from the advantages of HDFS
reliability, availability and scalability storage of hugenount .4 Log-structured File System.

of data upon lower cost hardware, Apache organization hag gs is designed and implemented with a subset of
developed a new open source distributed file sysk&doop portable Operating System Interface Of Unix (POStXnake

Distributed File Systenfl], which borrows the idea fromthe system more compact, more flexibility and have lower
Google File Systerf?]. Since HDFS is published, it has beeBerformance cost. To ease the complexity of debugging and
adopted in lots of commercial and academic systems. HoweM@hloying HLBS, we design and implement HLBS in user

HDFS only provides once-write-many-read semantics so thghce. Figure 1 shows the whole structure of HLBS.
applications requiring random read/write semantics cawdd

run upon HDFS. One typical example is back-end storage

system for virtual machine like [3]. LFS Like System Layer
For these kinds of applications, local file systems could

not provide enough space, high reliability, availabilitpda
scalability. To solve this problem, many projects have been HDFS Layer
launched. For instance, Amazon has developed a commercial
system named Elastic Block Storage [4], which could be
applied for applications including virtual machine bacide Operating System Kernel Space
storage. The laboratory &fTT Corporation (Nippon Telegraph
and Telephqne C_:orporatioril) Japan has developed Sheepdog Fig. 1. Layout of HLBS

system, which is an open source back-end storage system

designed especially for QEMU/KVM [5], [6] virtual machine.

Random read/write data access semantics are supported HLBS structure is shown in Fig. 1 and it has two modes
these systems. which are HDFS mode and local mode. HDFS mode is

|. INTRODUCTION

User Space
Local Layer

designed to provide scalable storage space for applicatiord) Inode Field

requiring large amount of storage space. For this modesd al Inode field describes the three indexes structure and file
provides storage service based on the underlying intesfate meta-data of HLBS.

HDFS. Compared with HDFS mode, HLBS could also provide5) Inode Map Field

local mode, which stores segment files in local file systems Inode map field describes the inode address and inode

especially for system testing and debugging usage. number.
_ Except data block field, other fields are all meta-data. There
A. Random Read/Write of HLBS fore, large data storage is more convenient for LFS. Thednod

HLBS supports random file access upon HDFS, which af@f@ structure is shown as follows.
has some advanced features like data compression, snapgpeict i node {
cache, garbage collection and so on. HLBS data formathas no ; .dqata bl ock i s 8KBx/
large differences with common file system, both of which are i nht 64 t | engt h;
made up of indirect block, inode, directory entry and such ;.tine of |ast nodifications/
structures. In order to simplify implementation, HLBS just yint64 t nti me:
implements one file (one inode) which is split into several ;. gKkB«12=96KB*/
segments that are stored upon HDFS or local file systems. jnt64 t bl ocks[12];
At anytime, there is only one active (latest) segment file. /. gkpB/ 8x SKB=SNB*/
The segment file is organized as linear logs. When data is j nt64 t i bl ock:
updated, there would be a new log appended at the end of latest ; . gk/ 8« 8K/ 8% 8K=8GB+/
segment to increase the possibility of sequential movement nt64 t doubly_i bl ock;
of disk head so that it could improve system throughput and . gk/ 8« 8K/ 8% 8K/ 8% 8K=8TB */
performance. The new produced log includes five fields shown i nt64 t triply_ibl ock;
in Fig. 2. New data blocks are allocated and correspond&ng attribute_ ((packed)):
index addresses are updated in inode field so that random __

read/write is supported. Dirty data blocks would be reaycle Any update operation would append a log in order seman-
by garbage collector to save more storage space. tics. The size of data block could be configured. Indirectkso

are index data blocks in inode. Every file has an inode so
HLBS has just one inode and one inode map that could be
i used to find the inode location in a log. When reading the
Fig. 2: Log Structure of HLBS latest data, it firstly finds the latest inode map and thenhget t
latest inode stored at the latest log in active segment fite. A
last, the addresses of data blocks in inode could be got from

latest log. Fig. 4 indicates the flowcharts of HLBS read and
o write operations.

Direct Blocks

Inode | Inode Map

| Log Header Data Block | Indirect Block

Data Blocl

Single Indirect

Double Indirect check if position+writelen
ss than max size

le

Triple Indirect

Data Bloc

Assemble and append
a log with data blocks

Fig. 3: Three Level Index Structure of HLBS

Report errors Report errors

Fig. 4. HLBS read/write procedure flowchart

Fig. 2 shows the log structure of HLBS, which contains five

fields. In Fig. 4, if HLBS works in HDFS mode, read/write requests
1) Log Header Field would be delivered to HDFS layer. However, in local mode,
Log header field describes the information of this lagquests would be sent to local file system layer.
including log size, log creation time, data block amounts

and so on. B. Typical use case of HLBS
2) Data Block Field Fig. 5 illustrates a typical architecture of virtual maahin
Data block field stores user data. back-end storage system constructed by HLBS. For each
3) Indirect Block Field (see Fig. 3) virtual machine, HLBS system is deployed to provide storage

Indirect block field stores the address indexes of daf@ace so that one virtual machine could access 64 bits storag
blocks. space at most. The 64 bits storage space of HLBS is split into

ability, performance and lower cost of HDFS and garbage

collection feature of HLBS, this will not be a problem any

T I more. We also implement a optional block-level compression

- feature to save more storage space. In addition, snapsHot an
cache features are also supported in HLBS to enhance the
reliability and 1/0O performance.

HDES Files C. HLBS snapshot

HLBS has two types of snapshots which are linear snapshot
and tree snapshot. HLBS stores the address of its file inode
in the latest log into a shapshot. With the idea of LFS, each

files th d b 4 with q 4/ aggended log is a natural linear snapshot. On the contrary,
segment files that could be accessed with random read/Willtg,s ¢qid take snapshots with specific names of any time

semantics. All the segment files are stored into HDFS stor ually, which is named tree snapshot. When users want to
space pooll or Iocgl file system. The internal structure of BL$0” backward or forward to a time point, HLBS locates the
could be divided into two parts as follows. snapshot according to the mapping between the time point and
« Log-based Block System (LBS) parplements the 10g- the snapshot name in each snapshot and then gets out the inode
based structure mechanism and takes the role to tranggt§mation to access required data sets. Snapshot feafure
64-bit linear addresses into segments (since log struciyiess supports to recover corrupted or mis-operated data by
is too small to manage and recycle so we split storgg@ihack and forward recovery operations [14]. LFS has ratu
space into many segment files), which are managed{aynshot feature because of logs are appended sequektially
HLBS upon HDFS storage pool or local file system. st need roll backward or forward to the corresponding log
« Hook HDFS partrealizes HLBS underlying interfaceq recover data at that time. In theory, HLBS could recover
which support basic file operations about HDFS storaggis at any time point after HLBS is started. However, it may
pool or local file system. not save all the data because of garbage collection. Users ar
recommended to mark log that contains important data so that
inode | Inode tap | it would produce a snapshot that is recorded in HLBS tree
~ - - snapshot. Fig. 7 and Fig. 8 show linear and tree snapshots
=~ _ - separately. In these two figures, one square represents one

\/ snapshot and™n is a snapshot that is created at tiffie.
Log Structure T
LBS append logs

Snapshot 4 Snapshot 5
T5

Virtual Machine Virtual Machine

64 bits storage space 64 bits storage space

Segment Files Segment Files

HLBS

Fig. 5: Design Principle of HLBS

| Log Header Data Block | Indirect Block

Snapshot 2
T2

Snapshot 3

Snapshot 1
T1 T3

RN Fig. 7: An example of linear snapshot of HLBS

Segment | Segment |

HDFS Files

Tree snhapshot could be produced at any time point like
Fig. 6: Log-Structured Block Storage System Fig. 8.

T34

In Fig. 6, we show the architecture of LBS. In LBS, log is
the update unit. When a update operation arrives at LBS, all
data of the update request would be packed into a log. Then
LBS will append the log into the end of the latest segment
file, which is a HLBS file stored in HDFS storage pool or
local file system. If a write operation updates one data block

T33

T32 T30

T31 T29

| T1 | T2 T3 T4 T5 T6 T7 T8 T9 | T10| T11| T12|

T13

| T28 | T27| Ti4

that has been created in an existing log, LBS will allocate _—

a new data block and reorganize data between the old data 6] T18] 119 120
block and new allocated data block in memory. Meanwhile, - _—

the new data block will be written into a new log and then 22

LBS updates the corresponding index mapping table, which 23| 124 125
replaces old data block address with new data block address. 126

At last, the new log would be appended into the end of latest Fig. 8: An example of tree snapshot of HLBS
segment file in HLBS. To recycle these invalid blocks, gagbag
collection mechanisms have been implemented for HLBS.

Although HLBS solves the once-write-many-read problemsSnapshots in Fig. 8 are created in the following order:
in HDFS, it would consume extra storage space for storingl) Initialize HLBS, update online and create 12 snapshots
meta-data in logs. However, with support of the great scal- (7'1-7'12), unmount HLBS.

2) Mount HLBS and rollback to the snapshotB$, update name to do next operation.

online sequentially and create 5 snapsh@$3%7'17), In order to get the latest snapshot name for above first and
unmount HLBS. third conditions, HLBS has to maintain an external file to
3) Mount HLBS and rollback to the snapshot @16, record the latest alive snapshot name.
update online sequentially and create 3 snapshots-(.
720), unmount HLBS. D. HLBS Garbage Collection
4) Mount HLBS and rollback to the snapshot @f19, In order to manage and recycle HLBS storage space, HLBS
update online sequentially and create 3 snapshics-(storage space is splitted into segments. The size of a segmen
T23), unmount HLBS. could be set according to user configuration. Each segment is
5) Mount HLBS and rollback to the snapshot @23, mapped to a HDFS file and the format of segment file name
update online sequentially and create 2 snapshicd-(is segno.segSegnas ascending from zero. HLBS has 64-bits
T725), unmount HLBS. storage space which are divided into two parts to represent
6) Mount HLBS and rollback to the snapshotB25, up- segment number and offset within a segment respectively.
date online sequentially and create one snapstia€)(To verify whether a data block is garbage data, HLBS would
unmount HLBS. get the valid index address of the data block from the latest
7) Mount HLBS and rollback to the snapshot @fl4, log firstly. Then HLBS scans all segments one by one to check
update online sequentially and create 2 snapshitg-(whether the latest address of the data block is the same as the
T28), unmount HLBS. old one. If they have different address, it says the old data
8) Mount HLBS and rollback to the snapshot©$, update block is dirty data block because the corresponding address
online sequentially and create 2 snapsh@t@%7'30), has been changed.
unmount HLBS. The segment file could be removed if all the data blocks
9) Mount HLBS and rollback to the snapshot©$, update in it are dirty. In addition, if there are several data bloeks
online sequentially and create 4 snapshd@t81¢7'34), available in one segment file, copy and remove mechanism,
unmount HLBS. copy valuable data blocks into a new log in the end of the
Tree snapshots could not only rollback/forward to any tandatest segment file from a dirty segment and then remove the
data sets but also update/take snapshot at any snapshot gisis Segment, should be adopted. Garbage collection of $iLB
without destroying existing snapshots. Linear snapsheasy works as following steps.
to design and implement because it is in chronological orders Segment usage calculation
which is natural log. However, tree snapshot has to be dedign During this procedure, HLBS Garbage Collector calcu-
and implemented with additional idea. In order to describe t lates the amounts of active data blocks in one segment file
snapshot like Fig. 8, each snapshot needs to record its last and save the results into a file namsemenusage.txt
snapshot name. Following data structure gives a simple mode There are two ways for segment usage calculation which
for the idea. are pull mode and push mode Pull mode would pull
segment files to local file system and then calculate
char up_ss_nane[128] ; all active data blocksPush modeNou_Id adopt Hadoop
char ss_nane[128] : MapReduce to run segment calculation concurrently.
} SNAPSHOT T « Segment recycling .
HLBS executes copy-remove or remove operation to recy-
In brief, the key points of tree snapshot are how to maintain cle a dirty segment if the amount of active data blocks in
the relationship among snapshots and how to get the last gne segment is more than a threshold. In order to prevent
shapshot name when producing a new snapshot. Our currentthe problem of inode modification concurrently, segment

typdef struct snapshot{

solution is to record all the snapshot relationship in aeml recycling must be finished as a background thread daemon
snapshot file in disk. when there is no 1/0 request. Garbage collection has to be

HLBS has three start modes with snapshot mechanism as executed between two snapshots separately when snapshot
follows. mechanism is enabled.

« If HLBS starts without a snapshot, it would run based ony Bs supports two types of Garbage collection, which
the latest log. New snapshot would be added to the ngit on-jine and off-line garbage collectionOn-line garbage
place of the latest snapshot (like34 in Fig. 8). collection is provided by a daemon thread once HLBS starts.

« If HLBS starts with a snapshot, it would take a newnq off-line garbage collection is executed as an external tool.
branch and update based on this branch (liken Fig. 8).

HLBS could get the snapshot according to user specified [1l. EVALUATION

snapshot name from HLBS snapshot interface easily. In this section, we first present HLBS’s experimental setup.
o If HLBS starts with a log between two continuous snafphen we evaluate the 1/O performance among HLBS, HDFS

shots, that is to say, it would take a new branch and updatel Sheepdog [3]. To make experimental results more compa-

based on this branch (HLBS starts based on a log betwessle with other similar storage systems, we also implement

T8 andT'29 in Fig. 8). HLBS has to get the latest snapshebme simple tools [15] to test /O performance.

: Parameter HLBS(MB/s) | HDFS(MB/s) | HLBS/HDFS
A. Experimental Setup BS=8KB, SIZE=500MB| __ 96.60 121.30 79.34%
Experiments in this paper are executed upon Linux Kerh&S=8KB, SIZE=100MB 81.85 101.02 80.20%
3.2.0-23-generic (Ubuntu Linux version 12.04). In order oBS=8KB, SIZE=50MB 66.13 70.21 94.19%
build HLBS, users have to install some dependencies. The opo—on B, SIZE=30MB 957 9.7 52.29%
ul ’ . P - tOBS=8KB, SIZE=10MB 34.46 37.79 91.90%
third part softwares ar6Lib [16], Snappy17], Log4c[18] and [BS=8KB, SIZE=1MB 5.69 14.68 35.71%
so on.GLib is a cross-platform software utility library [16]. TABLE I: Write comparison between HLBS and HDFS
Sngppyis a fast data _compression and decompressi_on library—parameter HLBS(MB/S) | HDFS(MBIS) | HLBS/HDFS
which is the foundation of HLBS block compression fea-8S=8KB, SIZE=500MB 103.66 148.40 70.00%
ture [17]. Log4ds a C-based logging library and all messageé?S=8KB, SIZE=100MB | 115.24 138.88 83.33%
logging of HLBS is based on it. HDFS is most important feroo—oke: SIZE=50MB 168.97 123.73 136.59%
gging of . ' p " BS=8KB, SIZE=30MB 14354 101.50 141.58%
HLBS which provides scalable storage pool for HLBS. TheS&s=gKB, SiZE=10MB 310.69 75.26 413.33%
dependencies have to be installed before HLBS is deployed®S=8KB, SIZE=1IMB 257.00 21.08 1223.80%

Generally, file systems have to be formated correctly beforeTABLE II: Read comparison between HLBS and HDFS

they could be used. HLBS also needs a format tool and we haw. . o
implemented a format tool named "mkfs.hlfs” for HLBS. The Table I illustrates that when block size is 8KB, HLBS aver-

experimental system should be configured with the followi aae write performance could achieve HDFS'S 79.34% 94.29%.
X cording to Fig. 10, we could also find that HLBS and HDFS
format command. :
mkfs.hifs -u mode:path -b blogize -s segmersize -m storagsystemsize 21MOSt have the same write /O performance between 0 50
megabyte per second. However, HDFS would have better write
The mode argument could be set dscal or hdfs The performance after 50 megabyte. In Table Il and Fig. 11, we
path gives the storage location of HLBS. Tirock sizeand could find read performance of HLBS is much better than
segmensize are block and segment size of HLBS whoddDFS between 0 100 megabyte. However, HDFS and HLBS
unit is byte. storagesystemsizeis the maximum size of thehave the same throughput when the read size is more than
whole HLBS storage space whose unit is megabyte. Afi€l0 megabyte. In summary, I/0 performance of HLBS could
the command is executed, there would produce a file narastlieve HDFS’s 79.34% 94.29% around, which we satisfy
superblockwhich records above meta-data of HLBS. The fitbese results because we add the random read/write feature
would be used when HLBS is initialized. In the followingnd a new layer upon HDFS.
sections, we would evaluate HLBS and similar storage syst

with different data block size and write size. 961 Comparison with Sheepdog

)) In this section, both the 10 efficiency and 10 time are
B. Comparison with HDFS evaluated for HLBS against Sheepdog. Sheepdog is a dis-
In this section, I/O performance of HLBS and HDFS is evalibuted storage system for QEMU/KVM, which provides
uated. In order to compare HLBS with HDFS, two prograrmgghly available block level storage volumes that can be
are realized to achieve this goal, which have the same loglitached to QEMU/KVM virtual machine [3]. Sheepdog is

shown in Fig. 9. based on Corosync [19], which would simplify its design and
_ implementation. However, it would increase Sheepdog’s the
optimization complexity. Meanwhile, HLBS is based on HDFS
Caculate the time which is more popular than Sheepdog’s Corosync. Sheepdog
operftion has no online data migration which limits the availability o
itself.
wiite operation Table I, Table IV , Fig. 12 and Fig. 13. show the 1/O
performance between HLBS and Sheepdog.

Caculate the time From Table Ill and Fig. 12, we could find that Sheepdog’s

after read or write

operation HLBS write VS. HDFS write
160
HLBS Write =t
140 - HDFS Write %
120 x.
100

Caculate 1/0 time

Write bandwidth (MB/s)

Fig. 9: 10 performance test tool flowchart 80 |
60 -
The 10 time consumed in Fig. 9 is accurate because the unit 40
of /O time is microsecond. The I/O interfaces of HLBS and 20r >
HDFS could be configured with different write size so that the O 0 100 0 30 10 1
comparison would be more comprehensive. The write and read Write Size (MB) BS = 8KB
experimental results are shown in Table I, Table Il , Fig. 10 Fig. 10: HLBS write VS. HDFS write

and Fig. 11.

Read bandwidth (MB/s)

HLBS read VS. HDFS read

350
HLBS Read =—+—
300 HDFS Read ----x---

250 -
200
150
100

50

500 100 50 30 10 1
Read Size (MB) BS = 8KB
Fig. 11: HLBS read VS. HDFS read

Parameter HLBS(MB/s) | Sheepdog(MB/s)
BS=8KB, SIZE=500MB 96.60 33.33
BS=8KB, SIZE=100MB 81.85 32.62
BS=8KB, SIZE=50MB 66.13 31.89
BS=8KB, SIZE=30MB 59.57 29.65
BS=8KB, SIZE=10MB 34.46 27.90

TAB

LE Ill: Write comparison between HLBS and Sheepd
Parameter HLBS(MB/s) | Sheepdog(MBI/s)
BS=8KB, SIZE=500MB 103.66 0.91
BS=8KB, SIZE=100MB 115.24 0.95
BS=8KB, SIZE=50MB 168.97 1.06
BS=8KB, SIZE=30MB 14354 1.06
BS=8KB, SIZE=10MB 310.69 0.99

write performance is stable but HLBS has better performance
than Sheepdog. We could also find HLBS has better write
performance when data is larger. Table IV and Fig. 13, irtdica
that Sheepdog has a worse read performance. In the same time,
HLBS'’s read performance would be better when read size is
lower. In summary, HLBS’s 1/0 performance is totally better
than Sheepdog.

IV. RELATED WORK

In order to widen HLBS’s application scenarios, we imple-
ment several important patches [20] for HLBS to support many
famous software such &penstack11], network block device
(NBD) [10], Quick EMUlation (QEMU)[5], Libvirt [12],
Internet Small Computer System Interface (iSJ%8] and
XEN [21]. Openstackis a cloud computing project to provide
an infrastructure as a service, which has three parts tlat ar
computing, networking and storage [22]. HLBS supports the
Cinder subproject ofOpenstack which is Openstackblock
storage. After HLBS is supported b@penstack Openstack

O\gould have a strong back-end storage that have lots of
advantages to store large data, which is inherited from the
advantages of HLBINBD is a block device whose content is
provided by a remote machindBD would be a cloud storage
based network block device after HLBS is integrated, which
would have a wider application scenari@@EMU and XEN
are two types of virtual machineQEMU and XEN would

TABLE IV: Read comparison between HLBS and HDFS support back-end storage system based on HDFS after HLBS

HLBS write VS. Sheepdog write

140
HLBS Write =——t—
@ 120 - Sheepdog Write ----x----
s
~ 100
<
]
= 80
©
3
Q 60
2
= 40t
20 Il Il Il Il Il
500 100 50 30 10
Write Size (MB) BS = 8KB
Fig. 12: HLBS write VS. Sheepdog write
HLBS read VS. Sheepdog read
350
HLBS Read —+—
@ 300 [Sheepdog Read ----%:---
o)
= 250
<
S 200
3
2 150 |
(%]
o)
- 100 -
3]
()
o 50
0 3k 3k ke P -

500 100 50 30 10
Read Size (MB) BS = 8KB

Fig. 13: HLBS read VS. Sheepdog read

supports them. In addition, the HLBS driver fQEEMU and
XEN realizes the separation between storage and computing
so that it would enhance data availabilityibvirt is an open
source application interfaces, daemon and managemeriotool
managing platform virtualization. Aftdribvirt is supported by
HLBS, Libvirt users would have the chances to build platform
virtualization based on HLBS.

Log-Structured File System (LFS) is designed to improve
I/0 performance and data reliability. For LFS, each write
operation produces a log structure, which should be apmende
sequentially when data is updated. The log may contain the
updated data and meta data to maintain the system more
effectively. Since the born of LFS, it has been used undelyman
conditions. Unfortunately, there would be produced lots of
meta data in Log-Structured File System so garbage calecti
would be important in such systems. Meanwhile, there is no
time for disk seek when LFS handles 1/O requirements. Hence,
LFS’s performance would be improved in the condition of big
data writing and LFS also has other advantages like natural
snapshot, quick indexing, and so on.

In the future, we would like to integrate HLBS into Google’s
Ganeti [23] project. The source codes of HLBS could be
downloaded from [24].

V. CONCLUSION
HDFS is a distributed, scalable, and portable file system
written in Java for the Hadoop framework. However, it just
supports once-write-many-read semantics. This limits BBd-
be used in applications requiring random read/write seit&nt
such as back-end storage system for virtual machine and so

on. In order to let HDFS support random read and write, w8l M. Mahjoub, A. Mdhaffar, R. B. Halima, and M. Jmaiel, “fomparative study of

; ; i ; the current cloud computing technologies and offersNetwork Cloud Computing
.deSIQn and Implement an mfrgstructure software H!‘BS which and Applications (NCCA), 2011 First International Symposion IEEE, 2011,
is based on HDFS and realize a log-structured like storage pp. 131-134.

system [25]. HLBS inherits all the advantages of HDFS aPra] g(.)(;l'?rotter, “Ganeti: An open source high-availabiliyster based on xen.” inlSA
LFS such as high availability, scalability, fault-tolecaand so [24] *HLBS source codes http://cloudxy.googlecode.com/svn/trunk/
on. HLBS has many wonderful features like snapshot, cadﬁ% H. Kang., “Hlbs design document. http://code.google.com/p/cloudxy/wiki/

. . ’ HifsDesign 2012.
garbage collection and block compression. It also supports

many famous softwares including NBD, Openstack, Libvirt,

XEN and so on. The average 1/O time of HLBS could achieve
HDFS's 79.34% 94.29%. Compared with Sheepdog, HLBS not
only provides better 1/0 performance, but could also suppor
more application scenarios.

VI. ACKNOWLEDGMENT

We would like to thank developers like Eric Blake at Redhat
and Morita Kazutaka at NTT Lab who help us a lot when we
develop HLBS patches for Libvirt and Sheepdog. Thanks for
some anonymous reviewers for their insightful comments and
detailed suggestions, which have substantially improves t
content and presentation of this paper. We also thank Kang
Hua for his suggestions and help for HLBS. This work is
supported by the Natural Science Foundation of China (Grant
No. 61272123).

REFERENCES

[1] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “Theobpddistributed file
system,” in Mass Storage Systems and Technologies (MSST), 2010 IEEE 26t
Symposium an IEEE, 2010, pp. 1-10.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google lgstem,” in ACM
SIGOPS Operating Systems Revigal. 37, no. 5. ACM, 2003, pp. 29-43.

[3] K. Morita, “Sheepdog: Distributed storage system fomggkvm,” LCA 2010 DS&R
miniconf 2010.

[4] S. Hazelhurst, “Scientific computing using virtual higerformance computing: a

case study using the amazon elastic computing cloud?roteedings of the 2008

annual research conference of the South African Institdt€emputer Scientists

and Information Technologists on IT research in develogingntries: riding the

wave of technology ACM, 2008, pp. 94-103.

F. Bellard, “Qemu, a fast and portable dynamic translatm USENIX Annual

Technical Conference, FREENIX Tra@005, pp. 41-46.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kkm: the linux virtual

machine monitor,” inProceedings of the Linux Symposiuwol. 1, 2007, pp. 225—

230.

M. Rosenblum and J. K. Ousterhout, “The design and impletation of a log-

structured file system ACM Transactions on Computer Systems (TQ@®8) 10,

no. 1, pp. 26-52, 1992.

[8] “HLBS,” https://code.google.com/p/cloudxy/

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A0, HR. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the art of virtualizationACM SIGOPS
Operating Systems Revievol. 37, no. 5, pp. 164-177, 2003.

[10] M. Lopez and P. Arturo Garcia Ares, “The network blockide,” Linux Journa)
vol. 2000, no. 73es, p. 40, 2000.

[11] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstaclowrd an open-source
solution for cloud computing.International Journal of Computer Applications
vol. 55, 2012.

[12] M. Bolte, M. Sievers, G. Birkenheuer, O. NiehorstendaA. Brinkmann, “Non-
intrusive virtualization management using libvirt,” Rroceedings of the Conference
on Design, Automation and Test in EuropeEuropean Design and Automation
Association, 2010, pp. 574-579.

[13] J. Satran and K. Meth, “Internet small computer systémesface (iscsi),” 2004.

[14] C. Lijun, L. Zhaoyuan, and J. Weiwei, “A snapshot systeased on cloud storage
log-structured block system.”

[15] “I/O test tools for HLBS, Sheepdog and HDFShttps://code.google.com/p/hifs/
wiki/ HLFSIOPerformance

[16] “GLIB,” http://en.wikipedia.org/wiki/ Glib

[17] “Snappy,”http://code.google.com/p/snappy/

[18] J. Lauret, G. Van Buren, and V. Fine, “Generic loggingeafor the distributed
computing.”

[19] “Corosync,”http:// corosync.github.io/ corosync/

[20] “HLBS patches for famous software.”http://cloudxy.googlecode.com/svn/
branches/ hifs/features/multi-file/ patches/

[21] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,Ha, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the art of virtualizatibin Proc. of the 19th
ACM symposium on Operating Systems Principk893, pp. 164-177.

[5

[6

[7

