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Abstract

In order to assess the improvement in detection performance via the paradigm
of poor data set censoring we study the problem of detection of a Rayleigh
fading signal in white Gaussian noise. The intent is to develop an algorithm
based on the hierarchical autonomous decision making approach that was
used for Doppler estimation but now apply it to the problem of detection.
Previous work has shown that large gains in performance are possible for
a set of receiving sensors if confidence measures can be used to reject poor
data sets. Additionally, the study illustrates a new facet of the important
statistical principle of conditionality.



1. Problem Statement

We are given the outputs of M sensors modeled as

xi[n] = αAi + wi[n] (1)

for n = 0, 1, . . . , N − 1 and i = 1, 2, . . . ,M . The signal amplitudes are
modeled as Ai ∼ N (0, σ2

A) and are independent and identically distributed
(IID) and the noises are independent from sensor to sensor which means
that wi[m] is independent of wj[n] for i �= j and for all m and n, and also
independent of the Ai’s. Each sensor noise wi[n] is assumed to be white
Gaussian noise (WGN) with the same variance σ2. This modeling is typically
used in communications (due to multipath reception), radar (due to multiple
reflectors of a target), and also sonar (due to multipath and/or multiple target
reflectors). The problem is one of detection for which the two hypotheses are
H0 : α = 0 and H1 : α = 1. The parameters which are σ2

A and σ2 are
assumed known. There are two cases to consider. The first case we will
call the unconditional case, which is the usual one assumed in practice, and
the second is the conditional case, which we will study to ascertain potential
performance improvements in detection. These two cases are described as
follows:

1. (unconditional) The observer does not have access to the actual amplitude
Ai for the ith sensor that was drawn from the N (0, σ2

A) population.
This results in a hypothesis testing problem of the covariances under
the two hypotheses. It leads to what is sometimes called an incoherent
detector. The data is described by the probability density function
(PDF) given by p(X;α), where X is the MN × 1 vector containing the
data from all the sensors, and with α the PDF parameter to be tested.

2. (conditional) For this case suppose that once Ai is drawn, this information
is made known to the observer. What is unknown and what is chosen
by “nature” is whether or not α = 0 or α = 1 in generating the data as
given by (1). The PDF for this case is a conditional one and is given
by p(X|A;α), where A = [A1A2 . . . AM ]T . For any single realization of
the amplitudes (if indeed H1 is in effect) the amplitudes are given by
A. Clearly, over multiple experiments the unconditional PDF is given
by the “predictive PDF” of

p(X;α) =

∫
p(X|A;α)p(A)dA. (2)
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We are interested in the difference in detection performance if we are given
the signal amplitudes for each experiment and hence can base our detector
on p(X|A;α), which describes the actual signal amplitude used for that par-
ticular experiment. This is in contrast to Case 1 in which we do not observe
the signal amplitudes directly under H1 so that we need to use (2) or an
average signal amplitude. There are important testing performance distinc-
tions between these cases which are usually referred to as the conditionality
principle [Cox and Hinkley 1974]. What we will see is that with the extra
information provided by the knowledge of the signal, Case 2 provides better
detection performance since we can design a detector based on the actual
signal generated and not the signal that might have been generated as sum-
marized by p(A). For example, knowing that a particular signal amplitude is
small (if H1 is in effect) discourages our use of that sensor data for detection.
Then we could with that knowledge label the data as “poor data” and there-
fore discard it. This strategy has already been incorporated for improved
distributed estimation [Kay 2022].

In Appendix A it is shown that for Case 1 the optimal Neyman-Pearson
(NP) detector decides a signal is present if

T1(X) =
M∑
i=1

Â2
i > γ1 (3)

where Âi = (1/N)
∑N−1

n=0 xi[n] is the sample mean for the ith sensor. This is
termed an incoherent detector or energy detector [Kay 1998]. On the other
hand, for Case 2 the NP optimal detector decides a signal is present if

T2(X) =

M∑
i=1

AiÂi > γ2 (4)

which is termed a coherent detector or matched filter [Kay 1998]. Note that
the sufficient statistics which are the estimated amplitudes Âi should be
weighted by the known amplitudes Ai. This is because the “SNR” of Âi can
be argued to be A2

i /(σ
2/N) (in the conditional sense). Also, the ith sensor

contributes AiÂi to the test statistic so that one can think of the Ai as a
“weight” that either emphasizes Âi if |Ai| is large or deemphasizes Âi if |Ai|
is small. Clearly, then, it would be advantageous to know the value of Ai

so that poor data sets, i.e., ones that have small |Ai| could be eliminated
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from the test statistic. It is this advantage that we wish to quantify before
embarking on how to discern the poor data sets.

Now the detectors given by (3) and (4) will give very different perfor-
mances. The difference in performance is akin to that of a matched filter
versus an energy detector. The former assumes knowledge of the signal (the
conditional case) while the latter assumes the signal is unknown but has some
statistical (or average) characterization (the unconditional case). Note that
the two detectors are to be compared with respect to the original experiment
which proceeds as follows:

Case 1. Nature chooses the amplitudes according to N (0, σ2
A) but does not

reveal the values to the observer. Nature then generates either xi[n] =
wi[n] or xi[n] = Ai + wi[n] and presents this data to the observer.

Case 2. Nature chooses the amplitudes according to N (0, σ2
A) and reveals

them to the observer. Nature then generates either xi[n] = wi[n] or
xi[n] = Ai + wi[n] and presents this data to the observer.

In either case a repeated experiment will yield a distribution of amplitudes
so we evaluate the detection performance based on an this average basis.

2. Asymptotic Detection Performance Com-

parison and a Key Result

The detection performance of the two test statistics of (3) and (4) is de-
rived in Appendix B. To gain some intuition we have derived the asymptotic
performance. This asymptotic result assumes that the signal variance σ2

A is
small and also that M is large so that σ2

A = c/M , for c a constant, goes to
zero as M becomes large. This type of analysis is especially appropriate in
detection theory in that the signal to be detected is usually small and so it
is only the availability of multiple samples and/or multiple sensor outputs
that make the detection possible. This provides a very nice result alluded
to in [Kay 2020] and which quantifies the conditionality principle with a
specific example as opposed to just a philosophy. Asymptotically both test
statistics are Gaussian. Also it is shown that each one can be said to be a
test statistic for the “Gauss-Gauss” problem. For this problem the deflection
coefficient quantifies the probability of detection in that this probability is
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monotonically increasing with the deflection coefficient. Specifically, the de-
tector for the Gauss-Gauss problem assumes that T ∼ N (µ0, σ

2) under H0

and T ∼ N (µ1, σ
2) under H1. It is shown in Appendix B that the deflection

coefficients for the test statistics T1(X) and for T2(X) are given by (under
the assumption that σ2

A/(σ
2/N) � 1)

d21 =
1

2
M

(
σ2
A

σ2/N

)2

d22 = M

(
σ2
A

σ2/N

)
where σ2

A/(σ
2/N) the “SNR” of a single sensor. The usual unconditional test

will always have a lower deflection coefficient since

d21
d22

=

1
2
M
(

σ2
A

σ2/N

)2
M
(

σ2
A

σ2/N

)
=

1
2
σ2
A

σ2/N

=
c/2

M(σ2/N)
< 1

for large enough M . It is also shown in Appendix B that

1

2
d22 =

1

2
d21 +

1

2
M ln

(
1 +

σ2
A

σ2/N

)
so that the improvement in the deflection coefficient (divided by 2) for the
conditional case is

1

2
M ln

(
1 +

σ2
A

σ2/N

)
(5)

which is recognized as the maximum mutual information (MI) for the Gaus-
sian channel, i.e., the channel capacity. This result is an example of the
conditionality relationship cited in [Kay 2020] that succinctly says that

KLD = SNR−MI.

Explicity it says that

D(p1(X)||p0(X))︸ ︷︷ ︸
KLD = d21/2

= EA [D(p1(X|A)||p0(X))]︸ ︷︷ ︸
KLD (or SNR) = d22/2

− D(p1(X,A)||p1(X)p1(A))︸ ︷︷ ︸
mutual information under H1

(6)
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where the mutual information is given by (5), p0(X) is the PDF under H0,
p1(X|A) is the conditional PDF of X under H1, p1(A) is the PDF of A under
H1 and finally p1(X) is the marginal PDF of X under H1 (also called the
predictive PDF). The loss in performance by not being able to observe the
outcomes of the signal amplitudes is thus given by the mutual information
between the data X and the signal amplitudes A. This loss occurs because
knowledge of the amplitudes indicates which PDF p1(x) or p1(x) is most likely
to be true. Note that the actual probability of detection can be quantified,
at least asymptotically, using (6) in Stein’s lemma [Kay 2020].

In summary, Case 2, the conditional one, leads us to design the detector in
a conditional sense (assuming of course that we observe the amplitudes). Any
other detector will have poorer performance in the long run. Said another way
we should design the detector based on the data that was actually observed
and not on the data that might have been observed. This is the essence of
the conditionality principle.

4. Computer Simulation

We next simulate the performance and compare against the asymptotic pre-
dictions given in the previous section. To do so we assume that we have
N = 50 data points at each of M = 100 sensors. The deflection coefficient of
the unconditional detector is d21 = 0.5 while that for the conditional detector
is d22 = 10. Hence, the performance improvement by using the conditional
detector, with of course knowleddge of the signal amplitudes, is a factor of 20
or 13 dB. The results are shown in Figure 1 and are portrayed as a receiver
operating characteristic of probability of detection Pd versus probability of
false alarm PFA. As can be seen the true performance as obtained via Monte
Carlo computer simulation matches very well the predicted performance.
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Figure 1: Receiver operating characteristic comparison between the uncon-
ditional and conditional detectors. Solid lines depict simulation results while
the dashed line indicate the performance predicted using the asymptotic
analysis.
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Appendix A - Detector Derivation

Consider Case 1 (unconditional) and let xi = [xi[0] xi[1] . . . xi[N − 1]]T and
X = [xT

1 xT
2 . . .xT

M ]T . Then we have that

xi = αAi1 +wi

where 1 = [1 1 . . . 1]T and is N × 1. Note that all xi’s are IID and each has
the distribution

xi ∼ N (0,Cα)

where
Cα = α2σ2

A11
T + σ2I.

Now under H0 we have C−1
0 = (1/σ2)I and using Woodbury’s identity

C−1
1 =

1

σ2
I− 1

σ4

σ2
A11

T

1 +N(σ2
A/σ

2)
.

The likelihood ratio is

L1(X) =

∏M
i=1

1
(2π)N/2|C1|1/2 exp

[−1
2
xT
i C

−1
1 xi

]
∏M

i=1
1

(2π)N/2|C0|1/2 exp
[−1

2
xT
i C

−1
0 xi

]
=

M∏
i=1

|C0|1/2
|C1|1/2 exp

[
1

2
xT
i (C

−1
0 −C−1

1 )xi

]
.

But

C−1
0 −C−1

1 =
1

σ4

σ2
A11

T

1 +N(σ2
A/σ

2)

and therefore

xT
i (C

−1
0 −C−1

1 )xi =
1

σ2

σ2
A

σ2 +Nσ2
A

(
1Txi

)2
=

N

σ2

σ2
A

σ2
A + σ2/N

Â2
i

where

Âi =
1

N

N−1∑
n=0

xi[n]
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and is recoginized as the sample mean for the ith sensor. As a result, we
have

L1(X) =
|C0|M/2

|C1|M/2
exp

[
N

σ2

σ2
A

σ2
A + σ2/N

M∑
i=1

Â2
i

]
or

l1(X) = lnL1(X) = c1 + c2

M∑
i=1

Â2
i

where c1 and c2 > 0 are constants, not depending on X. Therefore, for Case
1 the NP detector decides H1 if

T1(X) =

M∑
i=1

Â2
i > γ1.

Next consider Case 2, the conditional case. Then we need p(X|A;α) so
that the likelihood ratio (LR) (actually conditional LR) is

L2(X|A) =
p(X|A;α = 1)

p(X|A;α = 0)

and we note that this is just the case of a known signal under H1 of Ai1.
Hence, we have xi|Ai ∼ N (αAi1, σ

2I) and the xi’s are independent. There-
fore

L2(X) =

∏M
i=1

1

(2πσ2)
N
2
exp

[− 1
2σ2 (xi − Ai1)

T (xi − Ai1)
]

∏M
i=1

1

(2πσ2)
N
2
exp

[− 1
2σ2x

T
i xi

]
=

M∏
i=1

exp

[
− 1

2σ2
(−2Ai1

Txi +NA2
i

]

=

M∏
i=1

exp

[
Ai

σ2
NÂi − N

2σ2
A2

i

]
and thus

l2(X) =
N

σ2

M∑
i=1

AiÂi − N

2σ2

M∑
i=1

A2
i .

The NP detector decides H1 if

T2(X) =

M∑
i=1

AiÂi > γ2.
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Appendix B - Detector Performance

We obtain the asymptotic performance of the two detectors by letting M →
∞ and σ2

A → 0 such that Mσ2
A = c for c a constant. This provides some nice

intuition which the exact analysis, although possible, does not. For Case 1
we have that T1(X) =

∑M
i=1 Â

2
i , where Âi = αAi + w̄i ∼ N (0, α2σ2

A + σ2/N),

and where the Âi’s are IID. As a result

T1(X)

α2σ2
A + σ2/N

∼ χ2
M . (7)

Now for large M we use the central limit theorem to assert that the test
statistic is approximately Gaussian. Then, the mean and variance are easily
found from (7). We have that

E[T1(X)] = M(α2σ2
A + σ2/N)

var(T1(X)) = 2M(α2σ2
A + σ2/N)2

and letting σ2
A = c/M

E[T1(X)] = M(α2c/M + σ2/N)

var(T1(X)) = 2M(α2c/M + σ2/N)2 → 2Mσ4

N2
.

Since asymptotically the variances are the same under H0 and H1 the detec-
tion performance is characterized by the deflection coefficient, which is

d21 =
(E1[T1]−E0[T1])

2

var(T1)

=
[(c+Mσ2/N)− (Mσ2/N)]2

2Mσ4

N2

=
c2

2Mσ4

N2

=
M2σ4

A
2Mσ4

N2

=
1

2
M

(
σ2
A

σ2/N

)2

.

Next for Case 2 we have that T2(X) =
∑M

i=1AiÂi and note that ξi = AiÂi

are IID for i = 1, 2, . . . ,M . Thus, asymptotically the ξi’s are Gaussian and
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we need only find the first two moments. Clearly, then

E[T2] = ME[ξi] (8)

var(T2) = Mvar(ξi). (9)

Now

ξi = AiÂi

= Ai

(
1

N

N−1∑
n=0

xi[n]

)

= Ai
1

N

N−1∑
n=0

(αAi + wi[n])

= αA2
i + Aiw̄i

where w̄i = (1/N)
∑N−1

n=0 wi[n]. It follows that

E[ξi] = αE[A2
i ] + E[Aiw̄i]

= ασ2
A + E[Ai]E[w̄i]

= ασ2
A

due to independence of Ai and wi[n]. Also,

E[ξ2i ] = E[α2A4
i + 2αA3

i w̄i + A2
i w̄

2
i ]

= α2E[A4
i ] + E[A2

i ]E[w̄2
i ]

since Ai ∼ N (0, σ2
A) and has a zero third-order moment. Therefore,

E[ξ2i ] = α23σ4
A + σ2

Aσ
2/N

and

var(ξi) = E[ξ2i ]−E2[ξi]

= α22σ4
A + σ2

Aσ
2/N.

Finally from (8) and (9) we have

E[T2] = Mασ2
A

var(T2) = Mα22σ4
A +Mσ2

Aσ
2/N

= α22c2/M +Mσ2
Aσ

2/N → Mσ2
Aσ

2/N.
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As before, asymptotically the variance is the same under both H0 and H1.
The deflection coefficient becomes

d22 =
(Mσ2

A)
2

Mσ2
Aσ

2/N

= M

(
σ2
A

σ2/N

)
.

Next examine the difference of the deflection coefficients. To do so we let

ρ =
σ2
A

σ2/N

which is an SNR. Then, since d22 = Mρ and d21 = (M/2)ρ2, we have that

d22 − d21 = M(ρ− 1

2
ρ2).

Since we have assumed that σ2
A = c/M , ρ = (Nc/σ2)/M and for large enough

M , ρ < 1. Furthermore, since

ln(1 + x) = x− 1

2
x2 +O(x3)

as x → 0, we have that

d22 − d21 = M ln(1 + ρ)

or finally that asymptotically

d22 = d21 +M ln

(
1 +

σ2
A

σ2/N

)
.

Appendix C - MATLAB Listings

detection via conditioning.m

% detection_via_conditioning.m

%

% This program simulates the detection performance of a Rayleigh fading

% DC level in white Gaussian noise for a set of sensors. The usual
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% unconditional detector is compared against a detector that has knowledge

% of the random amplitudes at the sensors. The unconditional detector

% does not have this knowledge.

%

% External subprograms required: roccurve.m

clear all

close all

randn(’state’,0)

N=50; % data record length

sig2=10; % WGN variance

d2_c=10 % deflection coefficient for conditional detector

c=(sig2/N)*d2_c; % value of c to yield conditional deflection coeff.

M=100; % number of sensors

sig2A=c/M; % vaiance of random amplitude signal

d2_uc=(M/2)*((N*sig2A)/sig2)^2 % deflection coeff. for uncontional

% detector

nreal=5000; % Monte Carlo realizations

for n=1:nreal

for i=1:M

xi0=sqrt(sig2)*randn(N,1); % data received at each sensor under H0

Ai=sqrt(sig2A)*randn(1,1); % random amplitude

xi1=Ai+xi0; % data received at each sensor under H1

Aihat0=mean(xi0); % means of data at each sensor under H0 and H1

Aihat1=mean(xi1);

q0uc(i,1)=Aihat0.*Aihat0; % unconditional test statistic under H0

q1uc(i,1)=Aihat1.*Aihat1; % unconditional test statistic under H1

q0c(i,1)=Ai.*Aihat0; % conditional test statistic under H0

q1c(i,1)=Ai.*Aihat1; % conditional test statistic under H1

end

T0uc(n,1)=sum(q0uc); % sum all test statistics for each sensor

T1uc(n,1)=sum(q1uc);

T0c(n,1)=sum(q0c);

T1c(n,1)=sum(q1c);

end

varuc=var(T0uc); % estimated variance of unconditional test statistic

% under H0

d2uc_est=(mean(T1uc)-mean(T0uc))^2/varuc % estimated deflection
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% coeff. for unconditional detector

varc=var(T0c); % estimated variance of conditional test statistic

% under H0

d2c_est=(mean(T1c)-mean(T0c))^2/varc % estimated deflection

% coeff. for conditional detector

figure % plot PDFs of unconditional detector

subplot(2,1,1)

pdf(T0uc,nreal,50,0,50,0.5)

subplot(2,1,2)

pdf(T1uc,nreal,50,0,50,0.5)

title(’unconditional’)

figure % plot PDFs of conditional detector

subplot(2,1,1)

pdf(T0c,nreal,50,-10,10,0.5)

subplot(2,1,2)

pdf(T1c,nreal,50,-10,10,0.5)

title(’conditional’)

[Pfauc,Pduc,gam]=roccurve(T0uc,T1uc,100); % ROC calculations

[Pfac,Pdc,gam]=roccurve(T0c,T1c,100);

Pfa=[0:0.01:1]’;

Pdtheoryuc=Q(Qinv(Pfa)-sqrt(d2_uc));

Pdtheoryc=Q(Qinv(Pfa)-sqrt(d2_c));

figure

plot(Pfauc,Pduc,’-’,Pfa,Pdtheoryuc,’--’,Pfac,Pdc,’-’,Pfa,Pdtheoryc,’--’)

grid

xlabel(’Pfa’)

ylabel(’Pd’)

legend(’unconditional- simulated’,’unconditional - theory’,...

’conditional- simulated’,’conditional - theory’,’Location’,’SouthEast’)

print c:/MATLAB_R2014b/Metron/Metron_report_2021_14_Fig1.eps -depsc
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