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Abstract— This report analyzes the performance of distrib-
uted Medium Access Control (MAC) protocols in ultra-dense
multichannel wireless networks, where N frequency bands (or
channels) are shared by M = mN devices, and devices make
decisions to probe and then transmit over available frequency
bands. While such a system can be formulated as an M -player
Bayesian game, it is often infeasible to compute the Nash equi-
libria of a large-scale system due to the curse of dimensionality.
In this report, we exploit the Mean Field Game (MFG) approach
and analyze the system in the large population regime (N tends
to ∞ and m is a constant). We consider a distributed and
low complexity MAC protocol where each device probes d/k
channels by following an exponential clock which ticks with rate
k when it has a message to transmit, and optimizes the probing
strategy to balance throughput and probing cost. We present
a comprehensive analysis from the MFG perspective, including
the existence and uniqueness of and convergence to the Mean
Field Nash Equilibrium and the price of anarchy with respect to
the global optimal solution. Our analysis shows that the price of
anarchy is at most one half, but is close to zero when the traffic
load or the probing cost is low. Our numerical results confirm our
analysis and show that the MFNE is a good approximation of the
M -player system. Further, this report demonstrates the novelty
of MFG analysis, which can be used to study other distributed
MAC protocols in ultra-dense wireless networks.

Index Terms— Networks, network protocol design, network
performance analysis, medium access control.

I. INTRODUCTION

THE proliferation of smart wireless devices has brought
revolutionary changes in many domains, such as

smart homes, smart cities, autonomous cars, virtual-
reality/argumented reality, the Internet of the Things (IoT).
To accommodate the increasing demand of emerging wireless
applications on spectrum, large amounts of spectrum bands
that were previously unused or unavailable have recently been
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released for public use as unlicensed bands for large-scale
access, which calls for spectrum access algorithms that are
both distributed and efficient.

We consider a scenario in which a large number of smart
wireless devices need to constantly communicate their recent
status to a fusion center or to nearby peers. This setting
includes applications such as sensing and monitoring in smart
cities, factories or power stations, and safety messages in
autonomous driving.

In such applications, an old message can usually be dis-
carded when a new message arrives, because the outdated
information is no longer useful when new information is
available. Managing wireless channel access for such an ultra-
dense deployment of devices with a non-traditional traffic load
is a challenge.

In this paper, our focus is on performance analysis of
distributed Medium Access Control (MAC) protocols in such
ultra-dense multichannel wireless networks. Given the sheer
number and the heterogeneous nature of the ownership and
applications of the devices, as well the large unlicensed bands
that they operate over, it is difficult (if not impossible) to
have a centralized scheduler to allocate channels (frequency
bands) to devices. Therefore, distributed MAC protocols of
simple plug-and-play type are essential. However, performance
analysis of even simple distributed MAC in large-scale systems
is challenging.

Under our model, each device generates update packets at
some rate, and the device drops any previously created packet
when a new one is generated, i.e., only the most recent packet
at each device is a candidate for transmission. The devices
employ a simple MAC protocol under which each device has
a clock, and when the clock ticks randomly probes several
spectrum bands, and randomly picks one that is free. However,
since such probing incurs an energy cost and the number of
bands is large, the device can neither probe at a high frequency,
nor probe all bands at each clock tick. Thus, it must optimally
determine both the frequency of its clock, as well as how many
bands to probe when its clock ticks.

We seek to understand the performance of such a MAC
protocol when the number of devices, M and available spec-
trum bands, N are related as M = mN, where m is a
constant. The devices need to share access to the available
spectrum bands, and desire to maximize their individual steady
state throughputs while accounting for the energy that they
expend in probing. Each device has an exponential clock, and
can select any desired clock rate, k. When the clock ticks,
the device probes d/k bands, where d is a parameter that
it chooses.1 Now, the optimal choice of parameters (ki, di)

1The form d/k is for notational convenience, and the optimal choice will
turn out to be an integer.
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for a device i depends on the probability that a randomly
probed band is currently utilized, which in turn depends on the
parameters selected by the other devices. Hence, the devices
engage in a strategic game of observing channel utilization,
and choosing the tuple (ki, di) while trading off steady state
throughput and probing cost.

While this system can be modeled as an M -player Baysian
game where each device makes myopic probing/transmision
decisions based on local observations, it is infeasible to
compute the Nash equilibria for large M due to the curse of
dimensionality. In this paper, we use a mean field game (MFG)
approach to overcome this difficulty by studying the asymp-
totic performance of the system as the numbers of devices and
spectrum bands both go to infinity. In this large-population
regime, the distribution of channel states converges weakly to
a point mass, which can be computed explicitly. Therefore,
instead of interacting with M − 1 other players, each device
optimizes its strategy with respect to a fixed channel state
distribution, which dramatically simplifies the problem.

Main Results

Our main results are detailed as follows.
MFG Formulation: We first introduce the model and the

M -player Baysian game in Section II. The problem is hard to
analyze because it involves an M -dimensional Markov chain.
To overcome this difficulty, we adopt the MFG approach,
developed in [1]. We first show that fixed k and d for each
device, in the mean-field limit, the fraction of busy channels,
denoted by γ, converges weakly to a constant (the result
is presented in Theorem 1). Therefore, in the mean-field
limit, each device maximizes its utility (throughput minus
the probing cost) with respect to a constant γ instead of the
probability distribution of N channel states, which makes the
analysis tractable. In Section III, we also prove that probing
one channel with rate d dominates probing d/k channels with
rate k, which reduces the policy space of each device to
a single parameter d. In the mean-field limit, the M -player
Baysian game becomes an MFG. Specifically, given γ, the
fraction of busy channels, each device chooses a myopic d to
maximize its utility, which defines the mapping T2 : γ → d.
Given d, we can calculate the fraction of busy channels in the
mean-field limit, which defines the mapping: T1 : d → γ. The
Mean Field Nash Equilibrium (MFNE) is a pair (d∗, γ∗) such
that

d∗ = T2(T1(d∗)).

Existence, Uniqueness and Convergence to MFNE: In
Section V, we present a comprehensive analysis of the exis-
tence and uniqueness of the MFNE. Theorem 2 states that
there exists a unique MFNE when the traffic load is high, that
the MFNE results in d∗ = ∞ (i.e. each device probes channels
continuously without any waiting) when the traffic load is low,
and that the system jumps between a finite probing rate and
infinite probing rate when the load is in between. The precise
meanings of “high” and “low” are defined in Theorem 2.

In Section V, we examine convergence to the MFNE.
We focus on the most interesting regime, namely, the high
load regime, under which d∗ is finite in the unique MFNE.
Theorem 3 shows that the composition of T2 and T1 is a
contraction mapping, which implies the convergence to the
unique MFNE from any initial condition following the Banach
fixed point theorem. Further we show that the fixed point

obtained through these means is indeed an � Nash equilibrium
where � goes to 0 as the number of devices goes to infinity.

Price of Anarchy: In Section VI, we compare the per-
formance of the distributed MAC protocol with a solution
that solves a centralized optimization problem and forces the
resulting probing rate upon all the devices. The key difference
between the two is that the central solution knows exactly
how changing the probing rate of a device level will affect
the fraction of busy channels in the network, i.e. it knows
the function γ = T1(d); whereas in the distributed algorithm,
each device optimizes its probing rate d assuming that γ is a
constant. We show that the price of anarchy is upper bounded
by 0.5, i.e., the loss of efficiency is at most half. Numerical
studies show that the price of anarchy is close to zero when
the load is light and approaches the upper bound 0.5 when the
traffic load increases. Furthermore, comparing with the global
optimal solution, each device probes channels with a higher
rate at the MFNE, which results in higher throughput but also
consumes more energy during probing.

Numerical Evaluation: Finally, we evaluate the algorithm
with extensive simulations. In particular, we compare the per-
formance of the distributed MAC in finite population systems
with the MFG solution. We observe that the performance
predicted using MFG is close to the performance of finite
population systems even with moderate N, which confirms
the effectiveness of the MFG approach. We also observe that
the proposed algorithm significantly outperforms other simple
distributed MAC protocols.

Related Work

The mean field approach is a method of identifying the
steady-state behavior of an M−dimensional Markov chain,
where M is the number of particles (devices in our case),
whose states are modeled via the Markov chain. The goal
is to characterize the steady-state distribution (time becomes
asymptotically large) for a finite M, and then determine the
limiting steady-state distribution as M becomes asymptotically
large.

In order to do so, the mean field method proceeds to take
the two limits (particles and time) in the reverse order. The
main idea is to use the fact that under mild conditions, as the
number of particles, M becomes asymptotically large, the state
distribution of the limiting Markov chain can be accurately
represented using an ordinary differential equation (ODE).
Then the steady-state distribution of the limiting Markov chain
is the same as the infinite time limiting state of the ODE
(if it exists). Finally, if it can be shown that the order of
taking the particle and time limits can be interchanged (yield
the same limit) for the Markov chain, then the limiting state
of the ODE provides the desired solution referred to as the
Mean Field Equilibrium (MFE) (see [2] and references within).
A recent approach based on Stein’s method [3]–[6] can directly
establish the convergence of steady-state distributions to the
MFE without the interchange of the limits argument and
provide the rate of convergence.

When we do have convergence of the steady-state distrib-
ution to a deterministic limit of the ODE, we have a further
property referred to as Propagation of Chaos ( [7], [8]), under
which the states of any finite set of particles are independent
of each other given the state distribution as a whole. Such
an independence property is particularly useful in identifying
the behavior of a given particle in the large M limit, and
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Fig. 1. A system with M = 3 devices and N = 3 channels. Each device is
a three-state Markov chain.

to determine the corresponding ODE of the system. In the
context of wireless MAC protocols, such an independence
assumption regarding the backoff processes of the devices
using 802.11 MAC enabled the derivation of steady-state
performance in the limiting case of a large number of devices
that always have packets to transmit (called “saturated”) [9].

This assumption was questioned in [2], in which it was
shown that simply having a unique fixed point of the corre-
sponding ODE is insufficient, and that all trajectories have
to converge to that fixed point in order for the independence
claim to hold. Later, it was shown that there exist natural
parameter selections for 802.11 under which the sufficiency
conditions of [2] are satisfied for the cases of infinite and
finite backoff stages [10], [11]. More recently, the performance
of 802.11 MAC in the unsaturated case was characterized
using the mean field approach [12]. However, existing work
considers the case of a single interference channel or an
interference graph, unlike our setup of channel selection under
a high bandwidth regime.

The mean field regime has also been studied under a game
theoretic setting. Initial work in this space and many that
followed consider a one shot game under which the mean field
independence property is used to simplify decision making [1].
More recent work has considered repeated games under a vari-
ety of different application settings [13]–[16]. Here, the MFG
is considered as the extension of a Bayesian repeated game to
infinite players, with the independence property being used to
enable the identification of existence and structural properties
of a Mean Field Nash Equilibrium (MFNE). However, no
claim is typically made about the convergence of the steady-
state distribution of the finite player system to the mean field
in the limit as the number of players increases. This paper not
only establishes the existence and convergence of MFNE in
the limit but also shows the convergence of the steady-state
distribution to the MFE under a given policy.

II. SYSTEM MODEL AND AN M -PLAYER GAME

We consider a multi-channel ultra-dense wireless networks
with N channels and M = mN devices as shown in Figure 1.
At each time instance, one and only one device can transmit
over a given channel due to interference. As in many IoT
applications, each device wants to continuously communicate
their latest status to corresponding receivers, which could be
an access point or another IoT device. The messages are called

Fig. 2. The Continuous-Time Markov Chain.

status messages in this report. We note after a new status
message is generated, the device does not need to transmit old,
unsent status messages currently in the buffer, so the old status
messages will be discarded. This communication model is an
example where the system wants the most fresh information
and wants to minimize the “age of information” [17].

We assume for each device, status messages are generated
according to a Poisson process with rate λ. When the device
is probing an idle channel to transmit, it only stores the latest
status message. If the device is transmitting a status message
when a new status message arrives, the device keeps the newest
status message in the buffer and transmits it immediately after
finishing sending the one in transmission. A channel being
used to transmit a status message is in busy state, otherwise
the channel is in idle state. We further assume that the time it
takes to transmit a message is exponentially distributed with
mean one.

When a device has a status message to transmit, it searches
for an idle channel to transmit the message. A device cannot
afford to continuously monitor all N frequency bands at all
times, because channel probing costs energy and battery pow-
ered smart wireless devices are energy constrained. We assume
each device maintains an internal exponential clock with
rate k. When the exponential clock ticks, the device probes d

k

channels. If one of the d
k channels is idle, the device occupies

the channel and transmits the message in the buffer. A device
has three possible states: idle (0), probing (1) and transmitting
(2). Let Qi(t) denote the number of devices in state i at time
t. Each device is associated with a continuous-time Markov
chain with three states as shown in Figure 2 in principle. The
Markov-chain includes three states and the transitions occur
as follows:

• The state moves from idle to probing when a message
arrives, which occurs with rate λ.

• Let dl and kl denote the probing parameters used by
device l, and d and k denote M -dimensional vectors that
represent the probing parameters of all M devices. Given
Q2(t), the number of devices in the transmitting state,
by probing dl

kl
channels, the probability of finding an idle

channel is

1 −
(

Q2(t)
N

) dl
kl

.

Here we use sampling with replacement to derive the
expression, note, as the number of channels go to infinity
this is equivalent to sampling with replacement. There-
fore, the state of the Markov chain transits from probing
to transmitting with rate

kl

⎛
⎝1 −

(
Q2(t)

N

) dl
kl

⎞
⎠ .

• The state transits from transmitting to idle when (1) the
status message is transmitted, which occurs with rate
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one, and (2) no new status message arrives during the
transmission, which occurs with probability 1

1+λ . To see
this let T denote the transmission time of a message,
which is an exponential random variable with mean
one. Under the Poisson arrival, the probability of no
arrival during a period of duration t is e−λt. Therefore,
the probability that there is no new message arrival during
the transmission is

Pr (no arrival during transmission)
= E [Pr (no arrival during duration T |T )]

=
∫ ∞

t=0

e−λte−t d t

=
∫ ∞

t=0

e−(λ+1)t d t

=
1

1 + λ
.

Therefore, the transition rate is 1
1+λ .

Suppose Q2(t) is a constant, then the stationary distribu-
tion of this three-state Markov chain, denoted by μ, can be
calculated using the global balance equations:

λμ0 = kl

⎛
⎝1 −

(
Q2

N

) dl
kl

⎞
⎠μ1 =

1
1 + λ

μ2,

from which, we have

μ0 =
1

λ(1 + λ)
μ2

μ1 =
1

(1 + λ)kl

(
1 −

(
Q2
N

) dl
kl

)μ2

μ2 =
1

1 + 1
λ(1+λ) + 1

(1+λ)kl

�
1−(Q2

N )
dl
kl

� . (1)

However, Q2(t) is a random process whose stationary distri-
bution is determined by d and k so is difficult to calculate.
Now let μ(l)(d,k) denote the stationary distribution of the
Markov chain associated with device l. As mentioned earlier,
calculation of μ(l) is difficult even for fixed k and d.

Making the problem even more difficult, each device needs
to balance the energy consumed for probing and the amount
of information transmitted. We consider the following cost
function for each device:

Ĵ(dl, kl) = −μ
(l)
2 (d,k) + c

(
μ

(l)
1 (d,k)dl

)2

. (2)

In the equation above, the first term μ
(l)
2 (d,k) is the fraction

of time the device is in the transmitting state, so can be
viewed as the average throughput. The amount of energy
consumed during the transmission of a message is proportional
to the size of the message, so the transmission energy is
linearly proportional to the throughput and we can view the
throughput term also includes the energy consumption for
transmissions. In the second term, μ

(l)
1 (d,k) is the fraction of

time the device is in the probing state and dl is the number of
channels it probes per unit time when it is in the probing state,
so μ

(l)
1 (d,k)dl is the average number of channels probed per

unit time. c is a constant. The quadratic form is in keeping

with the idea that energy usage for a given task is convex
for most communication applications. Given other devices’
probing parameters d−l and k−l, device l aims at finding the
optimal d∗l and k∗

l such that

(d∗l , k
∗
l ) ∈ arg min

dl,kl

Ĵ(dl, kl)

= arg min
dl,kl

−μ
(l)
2 (d,k) + c

(
μ

(l)
1 (d,k)dl

)2

. (3)

We note that this is an M -player game and the difficulty in
solving the Nash equilibrium of this M -player game is in
calculating μ(l)(d,k) as discussed earlier.

III. MEAN-FIELD GAME FOR ULTRA-DENSE

WIRELESS NETWORKS

Since solving the M -player game (3) is difficult, we use the
MFG approach with N, M → ∞. In the next section, we will
show that assuming all devices use the same probing policy
(d, k), then as N, M → ∞, Qi(∞)/M converges weakly to
q∗i , which is the equilibrium point of the following mean-field
model:

dq0

dt
= −λq0 +

1
1 + λ

q2

dq1

dt
= λq0 − k(1 − (mq2)d/k)q1

dq2

dt
= k

(
1 − (mq2)d/k

)
q1 − 1

1 + λ
q2. (4)

We defer the derivation of this mean-field model and the
proof of convergence to the Appendix . Intuitively, qi(t) is
an approximation of Qi(t)/M and q∗i is an approximation of
Qi(∞)/M at the mean-field limit.

Given q∗2 , the fraction of devices are in transmitting state,
the fraction of busy channels is γ∗ = mq∗2 . Now to introduce
the MFG, we assume time-scale separation such that devices
adapt their probing strategies in a slower time scale than the
convergence of the mean-field model. Under this assumption,
when it is the time for devices to adapt their probing policies,
all devices can measure γ, which can be done accurately
under the time-scale separation assumption. Then after mea-
suring the fraction of busy channels is γ, each device can
compute the stationary distribution of its three-state Markov
chain according to (1) by substituting γ = Q2/N, and also the
corresponding cost J(d, k). Each device optimizes its probing
strategy (d∗, k∗) such that

(d∗, k∗) ∈ arg min
d,k

J(d, k), (5)

where

J(d, k) = − 1
1 + 1

λ(1+λ) + 1

(1+λ)k

�
1−γ

d
k

�

+ c

⎛
⎜⎜⎜⎝ d

(1 + λ)k
(
1 − γ

d
k

)
+

k

�
1−γ

d
k

�
λ + 1

⎞
⎟⎟⎟⎠

2

.

(6)

In other words, choosing a probing strategy to minimize its
cost for given γ. Note that the cost function J(d, k) is different
from Ĵ(d, k) defined in (2) because γ is a constant in J(d, k)
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but it is a function of (d, k) in Ĵ(d, k). We can view Ĵ(d, k)
as the true cost function and J(d, k) is an estimate of the true
cost obtained by assuming γ does not change even when the
device changes its probing strategy. We use different notations
to emphasize the difference.

In summary, given (d, k), the mean-field model (4) maps
(d, k) to the fraction of busy channels γ. Let T1 denote this
mapping, i.e.

T1 : (d, k) → γ.

Given the fraction of busy channels γ, each device minimizes
the cost function J in (d, k), which maps γ to policy (d, k).
Let T2 denote this mapping, i.e.

T2 : γ → (d, k).

With the notation defined above, we formally define the
MFG and Mean Field Nash Equilibrium (MFNE).
MFG for Distributed MAC:

• Initialization: All devices are initialized with a common
probing policy (d, k).

• System Adaptation: The mean-field model (4) converges
under policy (d, k) and the fraction of busy channels
converges to a constant γ.

• Policy Optimization: All devices learn γ in the system
adaptation step, and optimize their probing strategies by
minimizing J(d, k). Go to the system adaptation step. �

A policy (d∗, k∗) is called the MFNE if

(d∗, k∗) = T2(T1(d∗, k∗)).

At the MFNE where all devices use the policy (d∗, k∗), no
device has incentive to unilaterally change the strategy in the
mean-field limit. We also remark that the assumption that all
devices use the same policy (d, k) at the beginning is not
critical. Under the assumption all devices have the same cost
function, the optimal probing strategy is determined only by
γ. Therefore, even devices have different probing strategies at
the beginning, after they measure γ in the policy optimization
step, they will start to use the same probing policy.

In the next section, we prove the weak convergence of
Qi(∞)/M to q∗i , which is the key assumption we have used
to derive the MFG.

IV. MEAN-FIELD LIMIT WITH FIXED (d, k)
Assume all devices have the same cost function. Then

given the fraction of busy channels γ, the solution of the
optimal policy (d∗, k∗) is the same for all devices. Therefore,
without loss of generality, we assume all devices use the same
policy (d, k) and consider the convergence of the fraction of
busy channels to its mean-field limit in this homogeneous
case. Before proving this result, we first present the following
lemma.

Lemma 1: The cost function J(k, d) satisfies for any k < d,

J(d, d) < J(d, k).

Proof: Given γ, k and d, the stationary distribution of the
three-state Markov chain is given by (1) with Q2/N = γ. The
cost function J(k, d), therefore, can be written in terms of γ,
k, and d as

J(k, d) = − (1 + λ)k(1 − γd/k)
(1 + k(1 − γd/k)(1 + λ + 1

λ))

+ c

(
d

(1 + k(1 − γd/k)(1 + λ + 1
λ ))

)2

.

The transition rate from the probing state to the transmitting
state is k(1 − γd/k). Note that k(1− γd/k) is increasing in k
when d

k ≥ 1 because

∂

∂k

(
k
(
1 − γ

d
k

))
= 1 − γ

d
k + γ

d
k

d

k
log γ.

Now define

f(y, γ) = 1 − γy + γyy log γ.

We next prove that f(y) > 0 for y ≥ 1 and 0 < γ ≤ 1. Note
that

∂

∂y
f(y, γ) = −γy log γ + γy log γ + γyy(log γ)2

= γyy(log γ)2 > 0.

Now consider

f(1, γ) = 1 − γ + γ log γ.

We have
∂

∂γ
f(1, γ) = log γ < 0.

Therefore, we conclude that for y ≥ 1 and 0 < γ ≤ 1, we
have

f(y, γ) > f(1, γ) ≥ f(1, 1) = 0,

i.e.
∂

∂k

(
k
(
1 − γ

d
k

))
= 1 − γ

d
k + γ

d
k

d

k
log γ > 0

Define x = k(1 − γd/k). We obtain

J(x) = − (1 + λ)
1
x + 1 + λ + 1

λ

+ c

(
d

1 + x(1 + λ + 1
λ )

)2

,

which is clearly a decreasing function of x. Therefore, for
fixed d, J(d, k) is a decreasing function of k. Therefore,
we have J(d, d) < J(d, k) when d > k. �

According to the lemma above, given γ, the optimal policy
(d∗, k∗) satisfies k∗ = d∗. In other words, given d, it is optimal
to probe one channel at a time with rate d. Therefore, in the
following discussion, we focus on probing policies such that
d = k. Since d = k, we will now proceed assuming that each
device wishes to optimize a cost function written in terms of
d. This function can be written as:

J(d) = − (1 + λ)d(1 − γ)
1 + d(1 − γ)(1 + λ + 1

λ)

+ c

(
d

1 + d(1 − γ)(1 + λ + 1
λ)

)2

. (7)

and the dynamical system can be written as:

dq0

dt
= −λq0 +

1
1 + λ

q2

dq1

dt
= λq0 − d(1 − mq2)q1

dq2

dt
= d(1 − mq2)q1 − 1

1 + λ
q2 (8)

Theorem 1: Assume that all devices use the same policy
(d, d). Let γ(N)(∞) denote the fraction of busy channels at
the steady state in a system with N channels and mN devices.
Then γ(N)(∞) converges weakly to γ, which is the unique
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Fig. 3. Convergence to the Mean Field Limit with Fixed d.

equilibrium of mean-field model (4) with d = k, and is the
unique solution of the following equation:

γ =
m(1 + λ)k(1 − γ)

1 + d(1 − γ)(1 + λ + 1
λ)

. (9)

Due to the lack of space we restrict the proof of convergence
to the appendix, where we also briefly discuss the derivation
of the mean-field model (4). Figure 3 shows the simulation
results with m = 5, and c = 10, λ = 0.7, and d = 0.065. We
varied N from 10, to 100 and then to 1,000. We can clearly
see that γ converges to the mean-field limit as N increases,
and when N = 1, 000, γ concentrates to the mean-field limit.

V. UNIQUENESS AND CONVERGENCE OF MFNE

In the previous section, we have shown that given policy
(d, d), the stationary distribution of the mN -device system
converges to a unique mean-field limit, which defines mapping

T1 : d → γ. (10)

The mapping
T2 : γ → d (11)

is obtained by solving the optimization problem mink J(d) for
given γ.

The following lemma provides the closed-form expression
of mapping T2.

Lemma 2: Given 0 < γ < 1 and d ≥ 0, J(d) has a unique
minimizer

d =
a

max {2c − ab, 0} ,

where a = (1 − γ)(1 + λ) and b = (1 − γ)
(
1 + λ + 1

λ

)
.

Proof: Define a = (1 + λ)(1 − γ) and b = (1 − γ)(1 +
λ + 1

λ). Then J(d) can be written as

J(d) = − ad

1 + bd
+ c

(
d

1 + bd

)2

,

and

∂J(d)
∂d

==
1

(1 + bd)2

(
−a +

2cd

1 + bd

)
.

We now consider

h(d) = −a +
2cd

1 + bd
.

Note that h(d) is an increasing function for d ≥ 0. Further-
more h(0) = −a and

h(d) ≤ lim
d→∞

h(d) = −a +
2c

b
.

Therefore, if 2c
b ≤ a, (i.e. h(d) ≤ 0), then J(d) is a strictly

decreasing function and the minimum is achieved at d = ∞.
Otherwise, the minimum is achieved when

d =
a

2c − ab
.

In summary, J(d) is minimized at

d =
a

max {2c − ab, 0} .

�
Now given mapping T1 characterized in Theorem 1 and
mapping T2 characterized in Lemma 2, the following theorem
establishes the existence and uniqueness of the MFNE.

Theorem 2: The existence of MFG equilibria depends on
the traffic load λ and constant c. The results can be divided into
three cases. For fixed c, the following three cases correspond
to“low”, “high” and “medium” traffic regimes.

• Case I (Low Traffic Regime): If

2c ≤
(

max
{

0, 1 − m(1 + λ)
1 + λ + 1

λ

})2

(1 + λ)

×
(

1 + λ +
1
λ

)
, (12)

then d∗ = ∞ is the unique MGF equilibrium. In other
words, in this case, a device should continuously probe
idle channels (with no waiting) when there is a message
to transmit.

• Case II (High Traffic Regime): If

2c > (1 − γ∗)2 (1 + λ)
(

1 + λ +
1
λ

)
, (13)

where

γ∗ = 1 +
c

m(1 + λ)2
−
√

c2

m2(1 + λ)4
+

2c

m(1 + λ)2
,

then there exists a unique MGF equilibrium

d∗ =
(1 − γ∗)(1 + λ)

2c − (1 − γ∗)2(1 + λ)
(
1 + λ + 1

λ

) . (14)

• Case III (Medium Traffic Regime): Otherwise, MFNE
does not exist and devices switch probing strategy
between d = ∞ and

d =
(1 − γ̃)(1 + λ)

2c − (1 − γ̃)2(1 + λ)
(
1 + λ + 1

λ

) ,
where

γ̃ = min
{

1,
m(1 + λ)
1 + λ + 1

λ

}
.

Proof: We first consider Case I such that

2c ≤
(

max
{

0, 1 − m(1 + λ)
1 + λ + 1

λ

})2

(1 + λ)
(

1 + λ +
1
λ

)
.

(15)
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Under this condition, we have

1 − m(1 + λ)
1 + λ + 1

λ

> 0. (16)

Recall (q∗0 , q∗1 , q∗2) denote the unique equilibrium point of
mean field model (36) for a given d. For any d ≥ 0, we have

q∗2 ≤ 1 + λ

1 + λ + 1
λ

.

This upper bound holds because the following equations holds
for all d > 0 :

λq∗0 =
1

1 + λ
q∗2 (17)∑

i

q∗i = 1, (18)

which implies

1
λ

1 + λ
q∗2 + q∗1 + q∗2 = 1

and (
1 +

1
λ

1 + λ

)
q∗2 ≤ 1.

Recall that γ∗ = mq∗2 , so

γ∗ ≤ m(1 + λ)
1 + λ + 1

λ

.

Substituting this inequality into (15), we have that the follow-
ing inequality holds for any d ≥ 0 :

2c ≤ (1 − γ∗)2 (1 + λ)
(

1 + λ +
1
λ

)
= ab, (19)

where a and b are defined in Lemma 2. Therefore, 2c ≤ ab,
and d∗ = ∞ according to Lemma 2. Furthermore, given
d∗ = ∞, we have

γ∗ =
m(1 + λ)
1 + λ + 1

λ

> 0

according to Theorem 1 by taking d → ∞. Therefore, d∗ = ∞
is the unique MFG equilibrium.

Now if d∗ < ∞ is a MFG equilibrium, it satisfies the
following two equations

d∗ =
(1 − γ∗)(1 + λ)

2c − (1 − γ∗)2(1 + λ)
(
1 + λ + 1

λ

)
γ∗ =

md∗(1 − γ∗)(1 + λ)
1 + d∗(1 − γ∗)(1 + λ + 1

λ)
. (20)

Substituting the first equation into the second one, we obtain

γ∗ =
m(1 − γ∗)(1 + λ) (1−γ∗)(1+λ)

2c−(1−γ∗)2(1+λ)(1+λ+ 1
λ)

1 + (1 − γ∗)(1 + λ + 1
λ ) (1−γ∗)(1+λ)

2c−(1−γ∗)2(1+λ)(1+λ+ 1
λ )

=
m(1 + λ)2

2c
(1 − γ∗)2.

Note that γ∗ = m(1+λ)2

2c (1 − γ∗)2 has a unique solution
γ∗ ∈ (0, 1) since γ∗ is an increasing function (increasing from

0 to 1) and (1−γ∗)2 is a decreasing function (decreasing from
1 to 0). In particular, the unique solution is

γ∗ = 1 +
c

m(1 + λ)2
−
√

c2

m2(1 + λ)4
+

2c

m(1 + λ)2
. (21)

Now to guarantee d∗ < ∞, it requires

2c > (1 − γ∗)2(1 + λ)
(

1 + λ +
1
λ

)
according to (20), which concludes Case II.

Finally we consider Case III. When condition

2c > (1 − γ∗)2(1 + λ)
(

1 + λ +
1
λ

)
does not hold, after learning γ∗ defined in (21), all devices
choose strategy d = ∞. However, when

2c >

(
max

{
0, 1 − m(1 + λ)

1 + λ + 1
λ

})2

(1 + λ)
(

1 + λ +
1
λ

)
,

(22)

d = ∞ is not an MFG equilibrium because

γ̃ = T1(∞) = min
{

1,
m(1 + λ)
1 + λ + 1

λ

}

but

d̃ = T2 (γ̃) < ∞
when

2c > ab = (1 − γ̃)2(1 + λ)
(

1 + λ +
1
λ

)
.

Therefore, after all devices choosing d = ∞, the fraction
of busy channels is γ̃ in the mean-field limit. After learning
the fraction of busy channels is γ̃, all devices change their
policy to d = d̃. It can be verified that T1(d̃) ≤ γ∗, so
under policy d̃, the fraction of busy channels in the mean-
field limit is at most γ∗. Then after learning the fraction of
busy channels, all devices switch to policy d = ∞. Therefore
no MFG equilibrium exists in this case. The system switches
between d = ∞ and d = d̃. �

The theorem above presents the conditions under which an
MFNE exits. Next, we study the convergence (i.e, stability)
of the MFNE. For Case I, the convergence is immediate as
indicated in the proof of Theorem 2, where we can see that
all devices choose strategy d∗ = ∞ after learning the fraction
of busy channels and reach the MFNE. We now focus on
Case II under which d∗ is a finite value and have the following
global convergence result. Since no MFNE exits in Case III,
the question of convergence is irrelevant.

Theorem 3: Consider Case II in Theorem 2. For any
c > cm,λ where cm,λ is a positive constant such that

m
(1 + λ)

(1 + λ + 1/λ)

2cm,λ

(1+λ)(1+λ+ 1
λ ) + 1(

2cm,λ

(1+λ)(1+λ+ 1
λ ) − 1

)2 = 1,

the system converges to the MFNE starting from any initial
condition.

We remark that convergence to the mean-field limit (The-
orem 1) and convergence to the MFNE (Theorem 3) are two
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fundamentally different concepts. Convergence to the mean-
field limit shows that the stationary distributions of finite size
systems converge weakly to the fixed point of the mean-field
model for fixed (d, k), so no “game” is involved but the result
does justify the MFG approach. On contrast, convergence to
the MFNE does not involve finite-size stochastic systems, but
investigates the dynamics of the MFG. The result shows that
the iterative process, defined as the MFG for distributed MAC
in Section III, converges to the unique MFNE.

Proof: Recall mappings T1 and T2. Given policy (d, d),
the stationary distribution of the mN -device system converges
to a unique mean-field limit, which defines the following
mapping

T1 : d → γ. (23)

The mapping

T2 : γ → d (24)

is obtained by solving the optimization problem mind J(d) for
given γ.

We begin by showing that, for fixed m, T1 always has
Lipschitz constant which is upper bounded by m(1+λ). Based
on (9), we first obtain

∂γ

∂d
= − m(1 + λ)k(

1 + d(1 − γ)(1 + λ + 1
λ)
)2 ∂γ

∂d

+
m(1 + λ)(1 − γ)(

1 + k(1 − γ)(1 + λ + 1
λ )
)2

which implies that∣∣∣∣∂γ

∂d

∣∣∣∣ =
m(1 + λ)(1 − γ)

m(1 + λ)d +
(
1 + d(1 − γ)(1 + λ + 1/λ)

)2
< m(1 + λ)(1 − γ)
< m(1 + λ).

Recall that T2 is a map from γ to d which gives us the
unique minimizer for the cost function J(d), and that we
consider Case II such that

2c > (1 − γ)2(1 + λ)
(

1 + λ +
1

1 + λ

)
,

and

d =
(1 − γ)(1 + λ)

2c − (1 − γ)2(1 + λ)(1 + λ + 1/λ)
.

Define α = 2c

(1+λ)(1+λ+ 1
λ ) , we further obtain

k =
1

(1 + λ + 1/λ)
1 − γ

α − (1 − γ)2
,

from which, we have∣∣∣∣∂d

∂γ

∣∣∣∣ =
1

1 + λ + 1/λ

α + (1 − γ)2

(α − (1 − γ)2)2

<
1

1 + λ + 1/λ

α + 1
(α − 1)2

.

Define T (d) = T2(T1(d)). From the discussion above,
we have

∂T

∂d
=
∣∣∣∣∂d

∂γ

∣∣∣∣
∣∣∣∣∂γ

∂d

∣∣∣∣ ≤ m
(1 + λ)

(1 + λ + 1/λ)
α + 1

(α − 1)2
.

Note
α + 1

(α − 1)2

is a decreasing function of α for α > 1 because

d

dα

(
α + 1

(α − 1)2

)
= − α + 3

(α − 1)3
< 0,

so is a decreasing function of c according to the definition of
α. Furthermore,

lim
α→∞

α + 1
(α − 1)2

= 0.

Therefore, given m and λ, there exists cm,λ > 0 such that

m
(1 + λ)

(1 + λ + 1/λ)

2cm,λ

(1+λ)(1+λ+ 1
λ ) + 1(

2cm,λ

(1+λ)(1+λ+ 1
λ ) − 1

)2 = 1.

For any c > cm,λ, we have a contraction mapping and the
system converges to the MFG equilibrium. �

The following theorem further shows that under the con-
ditions of Theorem 3, the MFNE is an �-Nash-equilibrium
such that if all other players use sampling rate at the MFNE,
then the cost of a player who uses a different sampling rate
can deviate no more than O(�) from the cost of using the
sampling rate at the MFNE.

While we did show that under the conditions of Theorem 3,
a unique fixed point exists, this does not necessarily imply that
a given user will follow the MFNE strategy. We need to show
that the fixed point is a Nash equilibrium, this means that a
given user cannot hope to benefit through unilateral deviation.
Our proof technique shows that if a single user chooses to
deviate, the fraction of busy channels will deviate by a factor
that goes to zero as M tends to infinity. Note, this is a
nontrivial proof because we have to deal with a heterogeneous
system without any asymptotic independence condition. Next
given the fraction of busy channels, the probing rate is chosen
optimally for utility J , and since J is Lipschitz with respect
to γ, this means that the new probing rate will also deviate by
a factor that goes to zero as M tends to infinity. The result is
proved using the result on the approximation error of mean-
field models [3].

Theorem 4: Under the conditions of Theorem 3,
the MFNE is an �-Nash-Equilibrium of the M -player
Baysian game, where � = O

(
1

M1/3

)
.

Proof: Under the conditions of Theorem 3, we consider
two systems.

• System 1: In this system, all players use sampling rate
d∗ defined in (14). Let γ(N)(t) denote the fraction of
busy channels of the system at time t, which is a
random variable, and γ(N)(∞) denote the fraction of
busy channels at steady state.

• System 2: The first M − 1 players use sampling rate
d∗ and the M th player uses a different sampling rate.
Let γ̃(N)(t) denote the fraction of busy channels of
the system at time t, which is a random variable, and
γ̃(N)(∞) denote the fraction of busy channels at steady
state.

Now to prove the theorem, we first show that the fraction of
busy channels γ̃(N)(∞) remains to be close to γ∗ even when
the M th player uses a sampling rate different from d∗.
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Lemma 3:

E

[∥∥∥γ̃(N)(∞) − γ∗
∥∥∥2
]
≤ C

M
(25)

for some positive constant C independent of M. �
The proof of the lemma can be found in the Appendix.
From lemma 3 and Chebychev’s inequality, we can obtain

Pr(‖γ∗ − γ̃(N)(∞)‖ > �) ≤ C2

�2 M
.

We now compare the costs of the M th player in system 1
(using probing rate d∗ = T2(γ∗)) and in system 2 (using a
different sampling rate α). The policy picked by any device
given fraction of busy channels mq2(∞) is T2(mq2(∞)). The
policy picked by the MFNE policy is T2(γ∗).

Given γ > 0, the cost function J(d) is Lipschitz in d (see
the proof of Lemma 2). Therefore, for any γ, the map

γ
T2−→ d → J(d).

is also Lipschitz in γ. Say, the Lipschitz constant is L, then

E
[
J(T2(γ∗)) − J(T2(γ̃(N)(∞)))

]
≤ LE

[
γ∗ − γ̃(N)(∞))

]
≤ LE

[
γ∗ − γ̃(N)(∞)

∣∣∣ ‖γ∗ − γ̃(N)(∞)‖ > �
]

× Pr
(
‖γ∗ − γ̃(N)(∞)‖ > �

)
+ LE

[
γ∗ − γ̃(N)(∞)

∣∣∣ ‖γ∗ − γ̃(N)(∞)‖ ≤ �
]

≤ 2LC2

�2 M
+ L�.

Choosing � = 1
M1/3 ,

E
[
J(T2(γ∗)) − J(T2(γ̃(N)(∞)))

]
= O

(
1

M1/3

)
.

This concludes the proof.
�

VI. PRICE OF ANARCHY

In this section, we analyse the performance of the distributed
MAC with respect to a global optimal solution where a
centralized controller chooses the optimal k for minimizing

Ĵ(d) = − (1 + λ)d(1 − γ)
1 + d(1 − γ)(1 + λ + 1

λ )

+ c

(
d

1 + d(1 − γ)(1 + λ + 1
λ)

)2

, (26)

where

γ =
m(1 + λ)d(1 − γ)

1 + d(1 − γ)(1 + λ + 1
λ)

. (27)

Denote by d̂ the optimal solution. All devices are forced to
use probing rate d̂. We will call the cost corresponding to this
probing rate the global optimal cost and compare it with the
cost at the MFNE.

Recall that for the MFNE, each device minimizes it cost
function by assuming that γ is fixed. For the centralized case,
the controller solves (VI) by considering γ to be a function
of d as defined in (27). This is the reason the global optimal

solution differs from the cost at the MFNE. Let γ̂ denote the
fraction of busy channels that occurs as a result of the central
controller picking an optimal sampling rate. Define

1 − |J(γ∗)|
|Ĵ(γ̂)|

to be the price of anarchy. The following theorem shows that
the price of anarchy is at most 0.5. The price of anarchy can be
viewed as a measure of efficiency when comparing a distrib-
uted protocol to a centralized protocol. It measures the loss of
utility that occurs when we pick a distributed implementation
instead of a central one. Note that the cost at the MFNE and
the global optimal cost are both negative because the policy
that does not probe any channel and does not transmit any
message has cost zero. Therefore, lower the cost, the larger
its absolute value. In the following proof, we characterize the
price-of-anarchy by analyzing the conditions γ̂ and γ∗ have
to satisfy, which yield

|J(γ∗)|
|Ĵ(γ̂)| =

1
(1 + γ̂)

γ∗

γ̂
, (28)

and γ̂ < γ∗. Then we can conclude that the price of anarchy
is at most 0.5.

Theorem 5: The price of anarchy, 1 − |J(γ∗)|/|Ĵ(γ̂)|, is
at most 1/2. In Case I, the low traffic regime defined in
Theorem 2, the price of anarchy is zero.
We note that in the low traffic regime (Case I in Theorem 2),
both the distribution MAC and the centralized solution use
probing strategy with k∗ = ∞, so the price of anarchy is
zero. We provide a proof for Case II defined in Theorem 2.
Proof: By substituting (27) into (VI), we obtain

Ĵ(γ) = − γ

m
+ c

(
γ

m(1 + λ)(1 − γ)

)2

The optimal solution to minimize Ĵ(γ) can be obtained by
setting ∂Ĵ

∂γ to be zero, which yields that the minimizer γ̂ is the
unique solution to the following equation

γ̂ =
m(1 + λ)2(1 − γ̂)3

2c
.

By simple substitution, we further obtain

Ĵ(γ̂) = − (1 + λ)2

4c
(1 − γ̂)3(1 + γ̂) (29)

It can be shown (and indeed we show this in the appendix)
that γ∗ is the unique solution of the following equation

γ∗ =
m(1 + λ)2(1 − γ∗)2

2c
.

By substituting it into (VI), we have

J(γ∗) = − (1 + λ)2

4c
(1 − γ∗)2. (30)

The ratio of the cost function at MFNE to the optimal cost
function is given by:

|J(γ∗)|
|Ĵ(γ̂)| =

1
(1 + γ̂)

(1 − γ∗)2

(1 − γ̂)3
=

1
(1 + γ̂)

γ∗

γ̂
, (31)

where the last equality holds because

γ∗

γ̂
=

m(1+λ)2(1−γ∗)2

2c
m(1+λ)2(1−γ̂)3

2c

=
(1 − γ∗)2

(1 − γ̂)3
.
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Fig. 4. Price of Anarchy versus λ.

Observe that γ̂ is strictly smaller than γ∗ because otherwise

γ∗

γ̂
<

(1 − γ∗)2

(1 − γ̂)3
.

Therefore, we conclude that

1 >
|J(γ∗)|
|Ĵ(γ̂)| >

1
(1 + γ̂)

>
1
2
.

Which implies that:

0 < Price of Anarchy <
1
2

In other words, the price of anarchy is upper bounded by 0.5.
�

Focusing on Case II defined in Theorem 2, Figure 4 shows
the price of anarchy with c = 0.1 and m = 5 with λ varying
from 0.5 to 2. We can see that the price of anarchy increases
as λ increases and approaches 0.5.

VII. SIMULATIONS

In this section, we use simulations to compare the distrib-
uted MAC policy, named DMAC-G for short with other similar
light-weight distributed protocols. We simulated N = 1, 000
devices with m = 5, and c = 10, and the average λ varying
from 0.5 to 1. These choices of parameters guarantee the
existence and convergence to the MFNE. We used uniformiza-
tion to simulate the CTMC described in our system model in
Section II.

DMAC -G:We simulated two different scenarios for the
DMAC -G protocol:homogeneous case where all devices have
the same arrival rate and the same parameter, c and hetero-
geneous case where devices have different arrival rates and
different values of parameter c. Since we ran the simulations
on a laptop without parallelization, to speed up the simulations,
the fraction of busy channels was measured as a common
variable shared by all devices. In this way, we were able to
simulate an M -device system efficiently using uniformization.

• The homogeneous case In the homogeneous case every
device has the same arrival rate λ and energy parameter
c. Hence, each device has the same utility function
and so will choose the same sampling rate when given

Fig. 5. Average Costs under the Four Different Scenarios.

Fig. 6. Average Fraction of Busy Channels under the Four Different
Scenarios.

the common random variable for the fraction of busy
channels.

• The heterogeneous case Each device follows the policy
(d, d), however, the devices have different arrival rates
and parameters c. The arrival rates were picked uniformly
at random from [0.75λ, 1.25λ]. Similarly the values of
the parameter c were chosen uniformly at random from
[0.75c, 1.25c] for some c.

Therefore, both cases have the same average arrival rates and
cost parameters. Figures 5, 6 and 7 show that both scenarios
yield very similar cost, fraction of busy channels and delay.
We compare our algorithm under these two scenarios with a
CSMA protocol with exponential back off.

E-CSMA: Each device maintains an exponential clock with
initial rate k = 1. When the clock ticks, the device probes
one of the N channels, chosen uniformly at random. If the
probed channel is idle, the device starts to transmit the packet,
if not the device halves its sampling rate and the clock restarts.
We simulated this protocol under both homogeneous and
heterogeneous scenarios.

We evaluated the performance of the protocols in terms of
the cost and per-packet delay(for those successfully transmit-
ted packets). We can observe from Figure 5 that DMAC-G
yield a lower cost than E-CSMA and the gap increases as λ
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Fig. 7. Average delay per delivered packet per user under the Four Different
Scenarios.

increases. Note, that the cost function is a linear combination
of the probing cost minus the throughput. From Figure 7,
we can also observe that our algorithm has much lower per-
packet delay. The average delay is less than 2 for all the λ
under DMAC-G, which reduces the probing rate when the
traffic load increases, which reduces overall cost and per-
packet delay(increases the freshness of the information).

These simulations confirm: (i) the analytical results in this
report, while derived for the homogeneous case, also match
the performances of the heterogeneous case reasonably well;
and (ii) our low-complexity, adaptive MAC protocol signf-
icantly outperforms the exponential back-off MAC protocol
(a commonly used MAC protocol).

VIII. CONCLUSION

This report formulated a multichannel ultra-dense wireless
network with distributed MAC as a mean-field game, and
provided a comprehensive analysis of the system including
the existence and uniqueness of the MFNE, convergence
to the MFNE and the price of anarchy compared with a
global optimal solution. Numerical evaluations confirmed our
theoretical results. It should be noted that the assumption of
homogeneity is critical for the proofs. Although some of our
simulations suggest that our results hold even in heterogeneous
networks. Extending our work to heterogeneous cases is a
major challenge that we look forward to tackle in future work.

Another point of interest along similar lines is the issue of
estimating γ for each device. This goes hand in hand with our
assumption on time scale separation that allows the system
to converge to the mean field before the agents choose a
new probing rate. Since we do not assume correlation decay
between the agents, we do not establish propagation of chaos.
This is a major point of difference between our work and
most other works on mean field games. Thus, our system may
be sensitive to estimation errors in γ, making the time scale
separation necessary. Future work along these lines would be
of great interest.

APPENDIX

PROOF OF THEOREM 1

To understand the mean-field model (4), consider Q1(t) and
a sufficiently small time interval δ. According to a standard

argument of continuous-time Markov chain, we have

E[Q1(t + δ) − Q1(t)|Q(t) = Q]

= λQ0δ − k

(
1 −

(
Q2

N

)d/k
)

Q1δ + O(δ2), (32)

where λQ0δ is the probability that during [t, t + δ],
one of the devices moves from idle to probing, and

k

(
1 −

(
Q2
N

)d/k
)

Q1δ is the probability that during [t, t+δ],

one of the devices moves from probing to transmitting. Now
dividing Mδ on both sides, we obtain

E[Q1(t + δ) − Q1(t)|Q(t) = Q]
Mδ

= λ
Q0

M
− k

(
1 −

(
mQ2

M

)d/k
)

Q1

M
+ O(

δ

M
), (33)

Now defining qi = Qi

M and

q̇1 = lim
δ→0

E[Q1(t + δ) − Q1(t)|Q(t) = Q]
Mδ

,

we have

q̇1 = λq0 − k(1 − (mq2)d/k)q1, (34)

i.e. the mean-field model for q1. The rest of the mean-field
model can be similarly obtained. We can see that the mean-
field model approximates the original stochastic system by
using the expected drift (33) as the system dynamic.

In the following lemma, we first show that mean-field model
(4) has a unique equilibrium.

Lemma 4: Given d > 0 and k > 0, mean field model (4)
has a unique equilibrium.

Proof: The equilibrium point of mean field model (1)
satisfies the following fix point equations:

q∗0 =
k(1 − (mq∗2)d/k)

λ(1 + k(1 − (mq∗2)d/k)(1 + λ + 1
λ ))

q∗1 =
1

(1 + k(1 − (mq∗2)d/k)(1 + λ + 1
λ))

q∗2 =
(1 + λ)k(1 − (mq∗2)d/k)

(1 + k(1 − (mq∗2)d/k)(1 + λ + 1
λ))

.

Note that q∗0 and q∗1 are uniquely determined by q∗2 . There-
fore, we next show that q∗2 has a unique solution. Recall
that γ∗ = mq∗2 . Substituting it into the third equation above,
we have

γ∗ = m
(1 + λ)k(1 − (γ∗)d/k)

(1 + k(1 − (γ∗)d/k)(1 + λ + 1
λ ))

. (35)

Define function θ(·) such that

θ(γ∗) =
m(1 + λ)k(1 − (γ∗)

d
k )

1 + k(1 − (γ∗)
d
k )((1 + λ) + 1

λ )

Notice that θ(γ∗) is monotonically decreasing function in
γ∗ because

dθ(γ∗)
dγ∗ = −m(1 + λ)d(γ∗)d/k−1

×
(

1(
1 + k(1 − (γ∗)d/k)((1 + λ) + 1

λ )
)2
)

< 0.
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Further note that

θ(0) =
m(1 + λ)k(

1 + k((1 + λ) + 1
λ)
) > 0

and

θ(1) = 0.

Since γ∗ is strictly increasing in γ∗ and θ(γ∗) is strictly
decreasing in γ∗, we conclude that γ∗ = θ(γ∗) has a unique
solution, which concludes the lemma. �

We need to verify the conditions laid out in the main
result of [3] in order to complete our proof of convergence.
It is straightforward to see that the system has a bounded
transition rate and only a constant number of devices can go
from one state to another at any given point in time t since
they are all running exponential clocks. The ODE systems we
use are all twice differentiable. The perfect mean field model
condition,can be verified when k = d through the preceding
sections and equation (33) - (34). Recall each device uses
policy (d, d). The mean field model under this policy is similar
to Equation 4 and is the following nonlinear system:

dq0

dt
= −λq0 +

1
1 + λ

q2

dq1

dt
= λq0 − d(1 − mq2)q1

dq2

dt
= d(1 − mq2)q1 − 1

1 + λ
q2 (36)

Let (q∗0 , q∗1 , q∗2) denote the unique equilibrium point of this
dynamical system. The uniqueness of the equilibrium point is
due to Lemma (4). Define �i(t) to be

�i(t) = qi(t) − q∗i .

Then the dynamical system (36) can be equivalently repre-
sented by:

d�0
dt

= −λ�0 +
1

1 + λ
�2

d�1
dt

= λ�0 − d(1 − mq∗2)�1 + mdq1�2

d�2
dt

= d(1 − mq∗2)�1−mkq1�2 − 1
1 + λ

�2 (37)

It is clear from the definition that
∑

i∈0,1,2 �i = 0 for any time
t. The final condition to verify before using main result in [3]
is to check the dynamical system is globally asymptotically
stable and locally exponentially stable. We proceed to show
this in the following lemma.

Lemma 5: The dynamical system described by (37) is
asymptotically stable for any valid �i and locally exponentially
stable near the origin.

Proof: We prove the first part of the lemma using the
Lyapunov theorem [18]. Define Lyapunov function V (�) such
that

V (�) = |�0| + |�1| + |�2|. (38)

Note that
∑

i �i(t) = 0 for all t, so at least one of the �i is
negative and one is positive when � 	= 0.

We first analyze the cases where only one �i is strictly
negative, which includes the following three cases.

Case I: �0 < 0, �2 ≥ 0 and �1 ≥ 0: In this case, we have

V (�) = −�0 + �1 + �2.

Therefore,

dV

dt
= −d�0

dt
+

d�1
dt

+
d�2
dt

= λ�0 − 1
1 + λ

�2 + λ�0 − k(1 − mq∗2)�1

+ md�2q1 + d(1 − mq∗2)�1−md�2q1 − 1
1 + λ

�2

= −2
d�0
dt

= 2λ�0 − 2
1

1 + λ
�2 < 0.

Case II: �1 < 0, �0 > 0, and �2 ≥ 0: In this case, we have

V (�) = �0 − �1 + �2.

Therefore,

dV

dt
=

d�0
dt

− d�1
dt

+
d�2
dt

= −2
d�1
dt

= −2λ�0 + 2 d(1 − mq∗2)�1 − 2 mdq1�2 < 0.

Case III: �2 < 0, �0 > 0, and �1 ≥ 0: In this case, we have

V (�) = �0 + �1 − �2.

Therefore,

dV

dt
=

d�0
dt

+
d�1
dt

− d�2
dt

= −2
d�2
dt

= −2d(1 − mq∗2)�1 +
1

1 + λ
(2mdq1 + 2)�2 < 0.

For the cases where one �i is strictly positive, we can
similarly show dV

dt < 0. For example, when �0 > 0, �2 ≤ 0
and �1 ≤ 0, following a similar analysis to Case I, we have

dV

dt
= 2

d�0
dt

= −2λ�0 + 2
1

1 + λ
�2 < 0.

Therefore, based on the Lyapunov theorem, we conclude that
the system is asymptotically stable.

To prove that the system is locally exponentially stable,
we need to show that the linearized system matrix around
its equilibrium is negative definite, i.e, has strictly negative
eigenvalues. The linearized dynamical system is given by:
d�0
dt

= −λ�0 +
1

1 + λ
�2

d�2
dt

=
(
−d(1 − mq∗2)−mdq∗1 − 1

1 + λ

)
�2− d(1− mq∗2)�0,

(39)

where we used the fact �1 = −�0 − �2 and eliminated one of
the equations from the dynamical system.

The matrix corresponding to the linearized form can be
written as:

A =
[ −λ 1

1+λ

−d(1 − mq∗2) −d(1 − mq∗2)−mdq∗1 − 1
1+λ

]
Let η be an eigenvalue of A, Then η must satisfy

(−λ − η)
(− d(1 − mq∗2) − mdq∗1 − 1

1 + λ
− η

)
+

d

1 + λ
(1 − mq∗2) = 0.
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If η ≥ 0, then the first term is strictly positive and

(−λ − η)
(− d(1 − mq∗2) − mdq∗1 − 1

1 + λ
− η

)
+

d

1 + λ
(1 − mq∗2) > 0.

Therefore, the eigenvalues of A are strictly negative, and the
dynamical system is locally exponentially stable. �

The theorem holds by invoking Theorem 1 in [3].

PROOF OF LEMMA 3

The proof for this lemma proceeds along the lines of
Theorem 1 in [3]. Note that System 2 is also a CTMC. Let
Wm ∈ {0, 1, 2} denotes the state of the nth device. The state
of the CTMC can be represented by the following vector:

X :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q̃0

Q̃1

Q̃2

Z0

Z1

Z2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where

Q̃i :=
1
M

M−1∑
m=1

1Wm=i

is the number of devices of the first M − 1 devices in state i,
averaged over M, and

Zi :=
1
M

1WM=i.

Clearly, Q̃0 + Q̃1 + Q̃2 = M−1
M and Z0 + Z1 + Z2 = 1

M . Let
us now follow the steps used in [3].

Let ei denote a vector whose ith element is 1 and the rest
are 0, then the transition rate of the CTMC is

R̃x,y

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(M − 1)λq̃0, if y = x − 1
M

(e1 − e2)

(M − 1) d∗(1 − (q̃2 + z2))q̃1, if y = x − 1
M

(e2 − e3)

(M − 1)
1

1 + λ
q̃2, if y = x − 1

M
(e3 − e1)

λz0, if y = x − 1
M

(e4 − e5)

α(x)(1 − (q̃2 + z2))z1, if y = x − 1
M

(e5 − e6)

1
1 + λ

z2, if y = x − 1
M

(e6 − e1),

where α(x) is the sampling rate used by player M when the
system is in state x.

We then define f(x) to be

f(x) := lim
M→∞

∑
y:x �=y

R̃x,y(y − x),

and we have the following mean-field model

⎛
⎜⎜⎜⎜⎜⎝

˙̃q0
˙̃q1
˙̃q2

ż1

ż1

ż2

⎞
⎟⎟⎟⎟⎟⎠ = f(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λq̃0 +
1

1 + λ
q̃2

λq̃0 − d∗(1 − mq̃2)q̃1

d∗(1 − mq̃2)q̃1 − 1
1 + λ

q̃2

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (40)

which can be simplified to

⎛
⎝ ˙̃q0

˙̃q1
˙̃q2

⎞
⎠ = f(q̃) =

⎛
⎜⎜⎝

−λq̃0 +
1

1 + λ
q̃2

λq̃0 − d∗(1 − mq̃2)q̃1

d∗(1 − mq̃2)q̃1 − 1
1 + λ

q̃2

⎞
⎟⎟⎠ (41)

and is identical to the mean-field model (4).
We already proved that (4) is locally exponentially sta-

ble and globally asymptotically stable. Next we bound
E
[
‖Q̃(∞) − q∗‖2

]
, where q∗ is the mean-field equilibrium

point.
Let g(q̃) be the solution to the Poisson equation [3]:

�g(q̃)f(q̃) = ‖q̃ − q∗‖2, ∀q̃.

Following the analysis of [3], we have the following equa-
tion: (equation (8) in [3]):

E
[
‖Q̃(∞) − q∗‖2 + ‖Z(∞)‖2

]
(42)

= E
[
�g(Q̃(∞)) ·

(
f(Q̃(∞))

−
∑

y:y �=X(∞)

R̃X(∞),y((y) − X(∞))

⎞
⎠ (43)

−
∑

y:y �=X(∞)

(
R̃X(∞),y

(
g(qy) − g(Q̃(∞))

)
(44)

− R̃X(∞),y

(
�g(Q̃(∞)) · (qy − Q̃(∞))

))]
, (45)

where X(∞) = (Q̃(∞), Z(∞)) and qy = (y1, y2, y3) (i.e. qy

includes the first three elements of y).
To apply the main result in [3], we note that the following

conditions are valid:
• Bounded state Transition-rate There exists a constant

c such that:

1
M

E

⎡
⎣ ∑

y:y �=x

R̃x,y

⎤
⎦ ≤ c

• Bounded state Transition There exists a constant c1

such that for any (x, y) with Q̃x,y > 0:

‖y − x‖ ≤ c1

M

• Partial Derivative f(x) is clearly twice differentiable.
• Stability As stated above, f(x) is globally asymptoti-

cally stable and locally exponentially stable.
Therefore, only the Perfect Mean-field Model condition is
not satisfied. Without the perfect mean-field model condition,
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the following bound still holds:

E

[ ∑
y:y �=X(∞)

R̃X(∞),y

(
g(qy) − g(Q̃(∞))

−�g(Q̃(∞)) · (qy − Q̃(∞))
)] ≤ C1

M
.

Therefore, we only need to bound (43).
Since ‖�g(q)‖ is bounded by a constant according to the

analysis in [3] when the system satisfies the stability condition.
We now focus on the following term:

f(q) −
∑

y:y �=(x,z)

R̃x,y(qy − q),

and have∥∥∥∥∥∥f(q) −
∑

y:y �=(x,z)

R̃x,y(qy − q)

∥∥∥∥∥∥
=
∥∥∥∥(λ(1 − M − 1

M
)(e1 − e2)) + d∗(1 − (x2))(1 − M − 1

M
)

× (e2 − e3) +
1

1 + λ
(1 − M − 1

M
)(e3 − e1)

− d∗z2
M − 1

M
× (e2 − e3)

∥∥∥∥ <
2
M

‖2λ +
2
λ

+ d∗.,

which concludes the proof.
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