
An Optimal Stopping Approach for Iterative

Training in Federated Learning

Pengfei Jiang

ECEE

Arizona State University

Tempe, US

pjiang9@asu.edu

Lei Ying

EECS

University of Michigan

Ann Arbor, US

leiying@umich.edu

Abstract—This paper studies the problem of iterative training
in Federated Learning. We consider a system with a single
parameter server (PS) and M client devices for training a
predictive learning model with distributed data sets on the client
devices. The clients communicate with the parameter server
using a common wireless channel, so each time only one device
can transmit. The training is an iterative process consisting
of multiple rounds. At beginning of each round (also called
an iteration), each client trains the model, broadcast by the
parameter server at the beginning of the round, with its own
data. After finishing training, the device transmits the update to
the parameter server when the wireless channel is available. The
server aggregates updates to obtain a new model and broadcasts
it to all clients to start a new round. We consider adaptive
training where the parameter server decides when to stop/restart
a new round, and formulate the problem as an optimal stopping
problem. While this optimal stopping problem is difficult to
solve, we propose a modified optimal stopping problem. We first
develop a low complexity algorithm to solve the modified problem,
which also works for the original problem. Experiments on a real
data set shows significant improvements compared with policies
collecting a fixed number of updates in each round.

Index Terms—Distributed Machine Learning, Federated
Learning, Optimal Stopping

I. INTRODUCTION

Most existing machine learning applications for big-data

analytics require the models to be trained in data centers,

which raises significant privacy concerns when data used con-

tain sensitive personal information such as clicks, photos, etc.

Federated learning is a distributed machine learning framework

proposed by Google1 to train a machine learning model with

datasets distributed over local devices (such as mobile phones)

instead of in data centers. Training process is run on distributed

device such as mobile phones so that a device does not need to

expose personal data on the device to servers or other devices.

The updates for the model (e.g. the gradients of SGD) will

be transmitted to a parameter server which will aggregate the

updates to update the machine learning model. The updated

model will then be broadcast to the devices for the next

iteration of training.

Federated learning has applications in many areas [1], e.g.

Google has implemented federated learning in their Gboard

[2], [3], where a neural network language model is trained

1https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

using data on personal mobile devices for next-word prediction.

Due to randomness and uncertain in data processing and

transmissions, it has been observed [4], [5] that even with

dedicated servers, learning can be slowed down significantly

by a few machines that take unusually long time to complete

the training. The problem becomes even worse in Federated

Learning where devices have heterogeneous capacities, and

are less reliable. Therefore, a critical problem in Federated

Learning is to schedule the training, in particular for those

machine learning models that require iterative training. In

the past, [6], [7] have studied the convergence of the loss

function with respect to the number of local iterations on

each client and proposed mechanisms to optimally select the

number of local iterations on each client. This paper considers

a different problem that when the parameter server should stop

the current round, update the machine learning model, and

start the next round. Such a decision is based on the number

of updates received, the expected waiting time to receive the

next update, and how the loss function decreases as the number

of updates increases. We formulate the problem as an optimal

stopping problem and develop a low complexity algorithm to

solve the stopping rule. Our experiments on real datasets show

significant improvements on training time compared with the

policies that collect a fixed number of updates at each round.

II. PROBLEM FORMULATION

We consider a system with a single parameter server and

M client devices such as mobile phones, where each client

owns a local dataset. The system is used to train a learning

model using the local datasets in an iterative fashion. Each

iteration is called a “round”. At the beginning of each round,

the parameter server broadcasts the latest parameters (such

as the parameters of the neural network) to the clients. After

receiving the parameters, each client trains the model using

its local dataset, e.g. calculate the gradients using SGD, and

then transmits the updates (e.g. the gradients) to the parameter

server, which aggregates the updates to obtain a new model.

This finishes one round, and the next round starts when the

parameter server broadcasts the new parameters to the clients.

We further assume following idealized data processing and

communication models.

2020 54th Annual Conference on Information Sciences and Systems (CISS)

978-1-7281-4085-8/20/$31.00 ©2020 IEEE

20
20

 5
4t

h
A

nn
ua

l C
on

fe
re

nc
e

on
 In

fo
rm

at
io

n
Sc

ie
nc

es
 a

nd
 S

ys
te

m
s (

C
IS

S)
 9

78
-1

-7
28

1-
40

85
-8

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 1
0.

11
09

/C
IS

S4
88

34
.2

02
0.

15
70

61
60

94

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 29,2020 at 09:52:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Iterative training process

Data Processing Model: We assume each client finishes

the data processing and computing the update with some

probability p at each time slot. In other words, we assume the

processing time of each dataset is geometrically distributed.

Communication Model: We assume the client mobile

devices share a single channel when communicating with the

parameter server (this assumption can be easily extended to

multichannel OFDM systems). At the beginning of a time slot,

one of the clients who have finished their computing tasks

but have not transmitted the data to the parameter server will

be selected uniformly at random to upload the update to the

server, and the transmission succeeds with probability μ at

the end of the time slot. At some stopping time (the choice

of the stopping time is the focus of this paper), the parameter

server stops accepting new updates and updates the global

model using all uploaded information. The parameter server

then broadcasts a new global model to all clients to start a

new round.

This iterative training process is shown in Figure 1, where

τ denotes length of a time slot. We assume the amount of

time it takes for the parameter server to broadcast the updated

parameters is t0, which remains a constant for all rounds and

includes both the time it takes to aggregate all the updates it

receives and the time it takes to transmit the new parameter

to all clients.

We define αn to be the number of clients who have not

finished processing their local datasets, βn to be the number of

clients who have finished computing but have not transmitted

the updates to the parameter server, and kn = M − αn − βn

to be the number of clients who have updated the parameters

based on local datasets and also uploaded the updates to the

parameter server. The iterative training process can be modeled

as a discrete-time Markov chain (DTMC) whose state at time

slot n is denoted by Xn = (Kn,βn). Let xn = (kn, βn)
denote a realization of Xn.

Let R(k) denote the reward that the parameter server obtains

after receiving the kth update. The reward R can be decrement

of the loss function. We make the following assumptions in

this paper:

(1) R is positive, increasing with k and bounded.

(2) ΔR(k) = R(k + 1) − R(k) is decreasing in k, i.e.

the reward increment of receiving one more update is

diminishing as the parameter receives more and more

updates.

We first focus on a single round with a given reward

function. Let N denote the number of time slots in this ground,

which is a random variable as the parameter server can decide

to terminate this round and start the next round at anytime.

We consider the following stopping problem:

J∗ = sup
π∈S

E[R(KN)]

E[Nτ + t0]
(1)

where π is a stopping policy, S is the set of all stopping policy,

N is stopping time, and t0 is a constant as defined above.

The problem above is difficult to solve. Instead, we intro-

duce the following problem and then show that resolving this

new problem can lead to the solution of the original problem:

Vλ = sup
π∈S

E [R(KN)− λ(Nτ + t0)] (2)

2020 54th Annual Conference on Information Sciences and Systems (CISS)

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 29,2020 at 09:52:22 UTC from IEEE Xplore. Restrictions apply.

where λ is a positive constant.

For simplicity, we include the time slot in the system state

(Xn, n) = (Kn,βn, n). The transition probabilities of the

Markov chain are summarized below. Given state (Xn, n) =
(k, β, n) and any 0 ≤ i ≤ M − k − β, we have

• If β > 0, then

Pr [(Xn+1, n+ 1) = (k, β + i, n+ 1)|(Xn, n) = (k, β, n)]

=(1− μ)

(
M − k − β

i

)
pi(1− p)M−k−β−i,

Pr [(Xn+1, n+ 1) = (k + 1, β − 1 + i, n+ 1)

|(Xn, n) = (k, β, n)]

=μ

(
M − k − β

i

)
pi(1− p)M−k−β−i.

• If β = 0, then

Pr [(Xn+1, n+ 1) = (k, i, n+ 1)|(Xn, n) = (k, β, n)]

=

(
M − k − β

i

)
pi(1− p)M−k−β−i.

We define V (·) to be the value function so that V (k, β, n)
is the value of state (xn, n) = (k, β, n), and

V (k, β, n)

= sup
π,KN≤M−k

E [R(k +KN)− λ((N + n)τ + t0)] .

We can easily verify that Vλ = V (0, 0, 0).
The following theorem establishes the relationship between

the original problem and the modified problem. (The proof of

following theorems and lemmas can be found in our technical

report [8].)

Theorem 1. If there exists λ such that

Vλ = sup
π∈S

E(R(KN)− λ(Nτ + t0)) = 0,

then

J∗ = sup
π∈S

E[R(KN)]

E[λ(Nτ + t0)]
= λ.

Furthermore, if

Vλ = sup
π∈S

E(R(KN)− λ(Nτ + t0)) = 0

is attained by some policy π∗ ∈ S, then the policy π∗ is also

optimal for maximizing E [R(KN)] /E [Nτ + t0] .

Motivated by the result above, we can find the optimal

stopping time for problem 1 by the following steps:

• First initialize λ, and find optimal πλ in Problem (2) as

well as Vλ.

• Repeatedly update λ, and find a new optimal policy πλ

and optimal value Vλ for Problem (2) until finding a λ∗

such that optimal value Vλ∗ = 0. The final policy π∗ is

the optimal policy.

In the next section, we present a low complexity algorithm for

Problem (2).

III. LOW-COMPLEXITY ALGORITHM FOR SOLVING THE

MODIFIED OPTIMAL STOPPING PROBLEM

In this section, we focus on solving the optimal stopping

time problem for a fixed λ. We will show that optimal policy

is a threshold policy. For any state (xn, n) = (k, β, n), the

actions are to either terminate the current round or to continue

to the next time slot. The reward of stopping at that stage is

R(k) − λ(nτ + t0). If β = 0, then to continue means to

let unfinished clients continue to compute, but no update will

be transmitted since β = 0. Otherwise, βn ≥ 1, to continue

means a randomly selected client from the β clients will trans-

mit its result to the server while (M−k−β) unfinished clients

continue to process their datasets. The Bellman equation in

these two cases are presented below.

If β > 0, then

V (k, β, n)

=max {R(k)− λ(nτ + t0) ,

μ

(
M−k−β∑

i=0

W (i)V (k + 1, β − 1 + i, n+ 1)

)

+(1− μ)

(
M−k−β∑

i=0

W (i)V (k, β + i, n+ 1)

)}
. (3)

If β = 0, then

V (k, 0, n)

=max

{
R(k)− λ(nτ + t0),

M−k−β∑
i=0

W (i)V (k, i, n+ 1)

}
,

(4)

where W (i) =
(
M−k−β

i

)
pi(1− p)M−k−β−i.

Theorem 2. The following threshold policy is optimal for

Problem (2): For any state (k, β, n), policy π∗ first check β,

• When β > 0 : if k < k∗, continue; and if k ≥ k∗, stop;

• When β = 0: if k < k∗0 , continue; and if k ≥ k∗0 , stop.

In the algorithm above, k∗ = min{k∗1 ,M}, k∗1 = inf{k :
ΔR(k) ≤ λτ

μ }, and k∗0 ≤ k∗.

We remark that k∗ has a closed-form expression but k∗0 does

not. We next discuss how to calculate k∗0 numerically based

on the following lemma.

Lemma 1. Given any λ > 0, and any state (k, β, n) such that

k ≤ k∗, k + β ≥ k∗ and n ≥ k, we have

V (k, β, n) = R(k∗)− λ(nτ + t0)− (k − k∗)
λτ

μ
.

From the proof of theorem 2, we can omit n in state(k, β, n)
and just need to calculate a two-dimensional value table of

(k, β) with a fixed n. We can calculate this value using

dynamic programming and setting a fixed n larger than M. We

maintain a value table of size of M ×M . The value of states

2020 54th Annual Conference on Information Sciences and Systems (CISS)

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 29,2020 at 09:52:22 UTC from IEEE Xplore. Restrictions apply.

with different n can be calculated directly from following

Lemma:

Lemma 2. For any state (k, β, n) with n ≥ k, V (k, β, n +
1) = V (k, β, n)− λτ .

Furthermore, the value for states with k ≥ k∗and n ≥ k
is shown from proof of theorem 2, and the value for states

with k ≤ k∗, k + β ≥ k∗ and n ≥ k has been shown by

lemma 1, so that we need to calculate a value table with size

k∗×k∗ instead of size M×M , which are value of states with

k + β < k∗. So we only need to use dynamic programming

to calculate k∗0 as well as Vλ (V (0, 0, 0)).
We start from state (k∗−1, 0, n), where n is a fixed number

larger than M. The Bellman equation is as follows:

V (k∗ − 1, 0, n)

= max{R(k∗ − 1)− λ(nτ + t0),

M−k∗+1∑
i=0

G(i) · V (k∗ − 1, i, n)− λτ

}
, (5)

where G(i) =
(
M−k∗+1

i

)
pi(1− p)M−k∗+1−i.

Since V (k∗ − 1, i ≥ 1, n) are known, and

V (k∗ − 1, i ≥ 1, n) = R(k∗)− λ(nτ + t0)− λτ/μ

according to Lemma 1, we can solve this Bellman equation

and get V (k∗ − 1, 0, n).
Similarly we calculate the values of state (k∗− 2, 1, n) and

(k∗ − 2, 0, n). The optimal rule for state (k∗ − 2, 1, n) is to

continue according to theorem 2, so

V (k∗ − 2, 1, n)

= μ

(
M−k∗+1∑

i=0

G(i)V (k∗ − 1, i, n+ 1)

)

+ (1− μ)

(
M−k∗+1∑

i=0

G(i)V (k∗ − 2, 1 + i, n)

)
− λτ,

(6)

where G(i) =
(
M−k∗+1

i

)
pi(1−p)M−k∗+1−i. All values on the

right hand side except V (k∗ − 2, 1, n) are known, so V (k∗ −
2, 1, n) is done. For (k∗ − 2, 0, n), we have :

V (k∗ − 2, 0, n)

=max{R(k∗ − 2)− λ(nτ + t0),

M−k∗+2∑
i=0

H(i) · V (k∗ − 2, i, n)− λτ

}
, (7)

where H(i) =
(
M−k∗+2

i

)
pi(1 − p)M−k∗+2−i. Since we just

get V (k∗ − 2, 1, n), and V (k∗ − 2, i ≥ 2, n) are known by

Lemma 1, after solving this bellman equation, we can get

V (k∗ − 2, β = 0, n).
Next we can continue to calculate V (k∗ − 3, 2, n) ,V (k∗ −

3, 1, n), V (k∗ − 3, 0, n); and then V (k∗ − 4, 3, n) ,V (k∗ −
4, 2, n), V (k∗ − 4, 1, n),V (k∗ − 4, 0, n) · · · , V (0, β = k∗ −

1, n), V (0, β = k∗ − 2, n), ..., V (0, β = 0, n). Now we have

got this k∗ × k∗ value table.

According to Lemma 2, we can get Vλ = V (0, 0, 0) =
V (0, 0, n)+nλτ . From theorem 2 and principle of optimality,

we can get

k∗0 = min {M, inf{k : V (k, 0, n) = R(k)− λ(nτ + t0)}} ,

which determines the optimal stopping rule.

The algorithm is summarized below for given λ > 0.

Algorithm 1: The numerical algorithm for solving

Problem 2

Given parameters: M ,t0,τ ,λ, μ, p and reward function

R(k);
Calculate k∗, where k∗ = min{M,k∗1},

k∗1 = inf{k : ΔR(k) ≤ λτ
μ }

Set n = k∗1 + 1;

Get V (k, β, n) = R(k)− λ(nτ + t0) directly by

lemma 2, where k ≥ k∗, 0 ≤ β ≤ M − k∗;

Get V (k, β, n) = R(k∗)− λ(nτ + t0)− (k∗ − k)λτ/μ
by lemma 5, where k < k∗, k∗ − k ≤ β ≤ M − k ;

Calculate V (k∗ − 1, β = 0, n) by solving the Bellman

equation;

Calculate V (k∗ − 2, β = 1, n), V (k∗ − 2, β = 0, n);
V (k∗ − 3, β = 2, n), V (k∗ − 3, β = 1, n),

V (k∗ − 3, β = 0, n);
...

V (0, β = k∗ − 1, n), V (0, β = k∗ − 2, n),
..., V (0, β = 0, n) sequentially;

Return optimal value

Vλ = V (0, 0, 0) = V (0, 0, n) + λn;

Calculate

k∗0 = inf{k : V (k, 0, n) = R(k)− λ(nτ + t0)},

Return optimal policy πλ by theorem 2.

If β > 0: If k < k∗, continue; else, stop

else: If k < k∗0 : continue; else, stop.

Next we present a lower bound on J∗ and an upper bound

on k∗.

Corollary 1. J∗ is lower bounded by

R(1)

(1μ + 1
p)τ + t0

.

Proof. By the definition of J∗, we choose a policy π such that

it stops when k = 1. Therefore,

J∗ ≥
R(1)

Eπ(Nτ + t0)
.

If M = 1, then Eπ(N) = 1
μ + 1

p . Therefore, for any M ≥ 1,

Eπ(N) ≤ 1
μ + 1

p . Hence,

J∗ ≥
R(1)

Eπ(Nτ + t0)
≥

R(1)

(1μ + 1
p)τ + t0

.

2020 54th Annual Conference on Information Sciences and Systems (CISS)

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 29,2020 at 09:52:22 UTC from IEEE Xplore. Restrictions apply.

Corollary 2. J∗ is upper bounded by maxk
R(k)
kτ+t0

, where k
is an integer and 0 ≤ k ≤ M .

Proof. A straightforward upper bound on J∗ is

J ′ = sup
π∈S

E[R(KN)]

E[N · τ + t0]
,

where p and μ are both set to 1, so J∗ is upper bounded by

maxk
R(k)
kτ+t0

, where k is integer and 0 ≤ k ≤ M .

IV. THE SOLUTION OF THE ORIGINAL PROBLEM

In the previous section, we have shown how to find optimal

πλ for Problem (2) as well as Vλ for a given λ > 0. Next we

focus on finding the optimal λ so that we can solve the original

problem. Corollaries 1 and 2 show lower and upper bound on

J∗ , we can use them to initialize the λ. The following lemma

demonstrates some important properties of Vλ.

Lemma 3. Vλ is decreasing and convex in λ.

Proof. The proof follows the analysis in [9]. Assuming λ1 <
λ2, we have

Vλ2
= Eπλ2

[R(KN)− λ2(Nτ + t0)]

< Eπλ2
[R(KN)− λ1(Nτ + t0)]

≤ Eπλ1
[R(KN)− λ1(Nτ + t0)]

= Vλ1
,

so Vλ is decreasing with λ.

To prove convexity, given λ1 and λ2, let 0 < θ < 1, λ =
θλ1 + (1− θ)λ2, so

Vλ = Eπλ
[R(KN)− (θλ1 + (1− θ)λ2)(Nτ + t0)]

= θEπλ
[R(KN)− λ1(Nτ + t0)]

+ (1− θ)Eπλ
[R(KN)− λ2(Nτ + t0)]

≤ θVλ1
+ (1− θ)Vλ2

.

Now we can get an upper bound on k∗ for all possible λ
when R(k) = c− a

k+1 for some constants a and c.

Corollary 3. Given R(k) = c − a
k+1 , we have k∗ <√

a
c−a/2 (1 +

μ
p + μt0

τ).

Proof. It is directly from the definition of k∗ and Corollary 1.

Since k∗ = inf{k : ΔR(k) ≤ λτ
μ }, we have

a

k∗(k∗ + 1)
> λτ/μ >

c− a/2

(1μ + 1
p)τ + t0

τ/μ.

Therefore,

k∗ <

√
a

c− a/2
(1 +

μ

p
+

μt0
τ

).

Corollary 3 establishes an upper bound on k∗, which

depends on parameters a, c, μ, p, t0, and τ , but independent of

0 5 10 15 20 25 30 35 40

Number of clients

0.365

0.37

0.375

0.38

0.385

0.39

Lo
ss

Fitted curve

Original values
Fit values

Fig. 2: simulation result about reward function(loss function)

with 100 user

M. Therefore, the complexity of solving the modified problem

(2) is O(M(k∗)2) = O(M).
The next algorithm presents the details of solving the

optimal stopping time, where σ is the predefined accuracy

level.

Algorithm 2: Solution for problem 1

Given parameters: M ,t0,τ , μ, p ; Reward function

R(k);
Step 1: Calculate lower bound λlower and upper bound

λupper by corollary 1 and corollary 2.

Step 2: λ = (λupper + λlower)/2
while |Vλ| > σ = 0.001 do

if Vλ > 0 then
λlower ← λ, λ ← (λupper + λlower)/2

else
λupper ← λ, λ ← (λupper + λlower)/2

end

end

Step 4: return λ, which is equal to J∗

V. EVALUATION

Data and Model: We consider the experiment of training

a CNN model with distributed MNIST data. The dataset is

divided into 100 groups, each representing a local dataset (or

a client). Each client trains the CNN model with its own data

and uploads its newly trained parameters sequentially to a

parameter server if the channel is ON.

Reward function: We first plot the reward function R(k)
which is defined to be the decrement of the loss function (the

cross-entropy loss) when the number of updates increases from

k − 1 to k. The loss function for k = 1, · · · , 40, ... is shown

in Fig. 2, from which we can see that R(k) = c − a
k+1 fits

the reward function well. So in our experiments, we assume

R(k) = c− a
k+1 for some a > 0 and c > 0.

We evaluated the proposed algorithms using the MNIST

dataset. In our experiment, we chose M = 100, t0 = 3, 000ms

2020 54th Annual Conference on Information Sciences and Systems (CISS)

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 29,2020 at 09:52:22 UTC from IEEE Xplore. Restrictions apply.

which includes broadcasting time and aggregating time, τ =
10ms, and defined the reward function to be R(k) = 0.04 −
0.018
k+1 .

We further chose success probability of transmissions μ to

be 5
8 . The size of the parameters of our CNN is about 80k-

100k. Based on the transmission rate of current 4G systems,

which is about 50k per 10ms, we assume the average time

for finishing uploading the parameters is around 16ms, which

leads to our choice of μ. The success probability of data

processing p is set to be 1/500. We estimate the average

training time on cell phone is 5000ms. Since the duration

of each time slot is 10ms, the transmission probability is set

to be 1/500.

We compared the loss function under the proposed algo-

rithm based on optimal stopping time and other algorithms

based on fixed number of updates in each round. In particular,

we considered two other algorithms: the first algorithm require

updates from all M devices and the second algorithm, used by

Google, requires 10% updates from the M device. We remark

that the 10% rule is selected by comparing different fractions

and found the best one for each application [10]. So it can be

viewed as a policy uses the “optimal” number of updates at

each iteration.

For the optimal stopping time algorithm, we first obtain

lower bound λlower = 0.01203 and upper bound λupper =
0.01234. We then found the optimal λ∗ = 0.01209, from

which, we obtained that k∗=10 and k∗0 = 8 for the optimal

stopping rule.

The testing loss as a function time is shown in Figure 3.

Each data point in lines represents the test loss after one round

of training. The length interval between two data points in each

line of our figure shows average running time in one round

for each stopping rule. For example, the average simulated

running time of a round with the optimal stopping rule (k∗ =

10, k∗0 = 8) is 3.45s, as well as 3.55s for k = 10 and 28.76s for

k = 100. We can see that the optimal stopping rule reduce the

loss by at least 170% throughout the training process. Figure

4 compares just the optimal stopping rule and the 10% rule.

We again can see from this figure that even comparing to the

“optimal” fixed k, the optimal stopping rule still reduces the

loss function by 7% throughout.

VI. CONCLUSIONS

In this paper, we proposed an optimal stopping approach

for training machine learning models in Federated Learning.

Our simulation results showed the significant performance gain

compared with fixed training schedules.

ACKNOWLEDGEMENT

Research supported in part by NSF CNS 1618768, ECCS

1739344, and CNS 2002608.

REFERENCES

[1] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated
machine learning: Concept and applications. ACM Transactions on

Intelligent Systems and Technology (TIST), 10(2):12, 2019.

0 100 200 300 400 500 600 700

Time

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Lo
ss

k=10 (10% rule)
k=100 (100% rule)
k

0
=8,k=10 (optimal stopping)

Fig. 3: Experiment result using optimal stopping rule with 100

users

200 250 300 350 400 450 500 550 600 650 700

Time

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Lo
ss

k=10 (10% rule)
k

0
=8,k=10 (optimal stopping)

Fig. 4: Experiment result using optimal stopping rule with 100

users

[2] Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Françoise Beau-
fays. Federated learning of out-of-vocabulary words. arXiv preprint

arXiv:1903.10635, 2019.
[3] Andrew Hard, Kanishka Rao, Rajiv Mathews, Françoise Beaufays,

Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage.
Federated learning for mobile keyboard prediction. arXiv preprint

arXiv:1811.03604, 2018.
[4] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications

of the ACM, 56(2):74–80, 2013.
[5] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Mark Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,
et al. Large scale distributed deep networks. In Advances in neural

information processing systems, pages 1223–1231, 2012.
[6] Jianyu Wang and Gauri Joshi. Adaptive communication strategies to

achieve the best error-runtime trade-off in local-update sgd. arXiv

preprint arXiv:1810.08313, 2018.
[7] Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework

for the design and analysis of communication-efficient sgd algorithms.
arXiv preprint arXiv:1808.07576, 2018.

[8] P. Jiang and L. Ying. An optimal stopping approach for iterative training
in federated learning. Arizona State Technical Report, 2019.

[9] Thomas S Ferguson. Optimal stopping and applications. 2012.
[10] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,

et al. Communication-efficient learning of deep networks from decen-
tralized data. arXiv preprint arXiv:1602.05629, 2016.

2020 54th Annual Conference on Information Sciences and Systems (CISS)

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 29,2020 at 09:52:22 UTC from IEEE Xplore. Restrictions apply.

