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ABSTRACT
Classifiers for surveillance sonar systems are often designed
to operate on large sets of predefined clues, or features.
Sometimes the mathematical definitions for these features
are poorly known. Other times the designer is not aware that
a fixed and class-independent linear (or affine) relationship
exists between subsets of features. We discuss a method
based on Gram-Schmidt orthogonalization which allows the
classifier designer to determine whether subsets of features
have such relationships. Certain features can then be shown
unnecessary by application of Wozencraft and Jacobs’ “The-
orem of Irrelevance”. An approach is also described to rank
features to aid in the selection of an effective subset.

I. INTRODUCTION

The design of classifiers for a surveillance sonar system
is often based on a pre-existing set of measurements or
”features” considered useful for discrimination. This set
can be large and usually includes features that are simple
functions of basic physical measurements of the objects to
be classified. Features are often defined via linear functions
of fundamental measurements or other more basic features.
However, these functional relationships are sometimes un-
known to the designer or difficult to sort out.

Denote as Z the raw measurements collected from an
object to be classified. Features contained in the vector �f(Z)
are said to be affinely dependent on another set of features
contained in the vector �g(Z) if �f(Z) = �b + A�g(Z), ∀Z. In
other words there exists fixed vector �b and matrix A such
that �f(Z) is given by the above relationship regardless of
the object type (class). Examples include:

(1) If �g(Z) consisted of a single feature such as an
estimate of the angular width of an object and �f(Z)
was the cross-range extent measured by a sonar system
corresponding to that object at a fixed (non- random)
range R then �g(Z) = ∆θ and �f(Z) = R∆θ. Certain
classes of objects may possess greater angular widths
than others. However, feature �f(Z) is completely
defined by �g(Z).

(2) If �g(Z) and �f(Z) are estimated probabilities of an
object undergoing acceleration or maintaining constant
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velocity respectively at time t. Such estimates are
provided by tracking algorithms commonly used in
sonar. Note that �g(Z)+�f(Z) = 1. It may be that
certain classes of objects perform more maneuvers
than others and will exhibit this in terms of higher
values of �g(Z) and lower values of �f(Z). However
�f(Z) is completely defined by �g(Z).

In such cases the dependence may have been known to the
classifier designer, but in real cases with large feature sets
the dependence may be unknown or difficult to determine.
Furthermore, in real problems, more complicated examples
of affine dependence can and do arise in obscure and
inadvertent ways.

We are interested in detecting if any such affine rela-
tionships are present among features. In this short paper
we describe a nonparametric method for detecting affinely
dependent features that is based on the linear algebraic struc-
ture of the feature space and is independent of the underlying
distributions as well as separability among classes. Removal
of such dependent features is argued through application
of Wozencraft and Jacobs’ “Theorem of Irrelevance” [1].
Removal of such features is critical as they add no additional
information and unnecessarily increase the dimensionality of
the feature space.

“Approximate” affine dependence can also be identified
and a ranking of the features is possible. The pre-processing
advocated herein is a simple but often overlooked first step
in the design of sonar classifiers. The method has proved
useful for detecting and removing affinely dependent features
present in Navy feature databases.

II. “THEOREM OF IRRELEVANCE”

Denote the class-conditional pdf for class i as pr(ρ|i)
where r is the random vector of features and ρ is a particular
realization of r. Then decompose r as r = [r1 r2]T. Denote
ρ1 and ρ2 as the corresponding realizations of r1 and
r2. We observe that pr(ρ|i) = pr1(ρ1|i) pr2(ρ2|i, r1 =
ρ1) by Bayes rule. Wozencraft and Jacobs’ ”Theorem of
Irrelevance” states that the optimum classifier/dichotomizer
may disregard a vector r2 if and only if

pr2(ρ2|i, r1 = ρ1) = pr2(ρ2|r1 = ρ1) (1)

In other words r2 conditioned on r1 must be statistically
independent of i for r2 to be declared ”irrelevant”. Another



useful interpretation is that satisfaction of this requirement
implies that r1 is a sufficient statistic for estimating the pdfs
pr(ρ|i), ∀ i, although not necessarily minimal [2], [3], [4].

III. DETECTING AFFINELY DEPENDENT
FEATURES

The approach involves construction of a data matrix X
in which all available data are included. If C classes are
to be distinguished and Ni (1 x D) real-valued vector
measurements (i.e. feature vectors) are available for i =
1, ..., C, X is a N x D data matrix where each row is
a feature vector and N =

∑C
i=1 Ni. It is assumed that

N > D, a reasonable assumption as there are commonly
more measurements than features. An unsupervised situation
in which N unlabeled feature vectors are presented can also
be considered.

Denote the D features by f1, f2, . . . , fD. We are interested
in affine dependence of the form:

fk =
D∑

j=1,j �=k

αk
j fj + bk (2)

where bk need not equal zero. Note that the linear algebraic
concept of linear dependence among a set of vectors does not
accommodate affine dependence. Thus a transformation such
as standardization [5] must be performed before standard
linear algebraic techniques can be applied. This amounts to
estimating the sample mean µ̂ and sample standard deviation
σ̂ of each column of X and transforming every element x
in that column according to x = (x− µ̂)/σ̂. Denote X after
standardization as X̃. The transformed features are denoted
f̃1, f̃2, . . . , f̃D. Any affine dependence (bk �= 0 in eqn. (2))
is eliminated, i.e.

f̃k =
D∑

j=1,j �=k

α̃k
j f̃j (3)

(see appendix). It is clear that the elements of X̃ will be
approximately zero mean with unit variance. Thus standard-
ization has the added effect of controlling the dynamic range
of the elements of X and numerically stabilizing Gram-
Schmidt orthogonalization.

Gram-Schmidt orthogonalization can be performed on the
columns of X̃ via QR matrix decomposition, i.e X̃ = QR.
The linearly dependent column vectors in X̃ are marked by
zeros along the diagonal of R.

If Rkk is the leftmost zero element along the diago-
nal of R then x̃k is linearly dependent on the vectors
x̃1, x̃2, . . . , x̃k−1 and there exists a set of coefficients,
α̃k

1 , α̃k
2 , . . . , α̃k

k−1 such that x̃k can be expressed as:

x̃k = α̃k
1 x̃1 + α̃k

2 x̃2 + . . . + α̃k
k−1x̃k−1 (4)

Note that at least one (but not all) α̃k’s need be nonzero.
Since this dependence is enforced over all C classes and for
all N measurements, the probability that such a dependence

manifested due to chance is effectively zero. It is worth
mentioning that the dependence is not linked to the manner
in which X was populated. Specifically a permutation of
the rows of X (equivalently X̃) will not alter the linear
dependence. This can be seen by noting that pre-multiplying
x̃k in (4) by a permutation matrix results in

ũk = α̃k
1 ũ1 + α̃k

2 ũ2 + . . . + α̃k
k−1ũk−1 (5)

where ũj, j = 1, ...,D is the permuted x̃j.
Thus feature fk must be expressible as

fk = αk
1f1 + αk

2f2 + . . . + αk
k−1fk−1 + bk (6)

or

fk =
D∑

j=1

αk
j fj + bk (7)

where αk
j , j ≥ k must equal 0. If Rmm (k < m ≤ D)

is the next zero element along the diagonal of R then x̃m

is linearly dependent on the vectors x̃1, x̃2, . . . , x̃m−1 and
there exists another set of coefficients, α̃m

1 , α̃m
2 , . . . , α̃m

m−1

such that x̃m can be expressed as:

x̃m = α̃m
1 x̃1+α̃m

2 x̃2+ . . .+α̃m
k x̃k+ . . .+α̃m

m−1x̃m−1 (8)

Once again not all α̃m’s need be nonzero. Furthermore since
x̃k is linearly dependent on x̃1, x̃2, . . . , x̃k−1, α̃m

k can be set
equal to zero. Thus fm can be expressed as

fm =
D∑

j=1

αm
j fj + bm (9)

where αm
j must equal zero for j = k as well as for j ≥ m.

Therefore the set of features r2 for which Rjj = 0 are
affinely dependent on the remainder of the features denoted
r1. From eqns. (7) and (9), we can see that ρ2 is completely
determined by ρ1 independent of class i. Thus eqn. 1 is
satisfied and r2 is irrelevant. It is worth noting that if N =
D and X is full rank then X̃ has a rank of D − 1. Thus
this process can be successfully applied only if N is strictly
greater than D.

Even if an exact affine dependence existed, errors in
machine calculation of R can lead to non-zero Rjj . Higham
[6, p. 24,122] has shown that performing the QR decom-
position via a sequence of Givens rotations leads to an
ultimate relative error that is acceptable and on the level of
machine precision u. Here relative error, defined as ||R−R̂||2

||X̃||2
(= ||R−R̂||F

||X̃||F ) is the normalized difference between the exact

R and R̂, estimated by the actual decomposition. Note that

||R − R̂||F
||X̃||F

≈ Dε√
ND

=

√
D

N
ε = u (10)

where ε is the average value of |Rij − R̂ij | (i, j = 1, ...,D).
Thus if N ≈ 100D, Rjj can be compared to a threshold of
ten times machine precision to detect linear dependence.



If certain features are preferred (ex. considered more
intuitive or powerful) by the designer, reordering can be
performed such that these populate the leftmost columns of
X. This step increases the likelihood that such a feature will
be retained in the event that it is affinely dependent on other
features.

IV. “APPROXIMATELY” AFFINELY DEPENDENT
FEATURES

At this point let us assume that features that are exactly
affinely dependent have been detected and removed. Op-
erating on the resultant set, the process of Gram-Schmidt
orthogonalization of x̃k amounts to

(1) Determining the least-squares fit of x̃k in the sub-
space spanned by {x̃1, ..., x̃k−1}. This is equivalent to
determining the projection of x̃k onto this subspace.
We denote this projection as Px̃k where P is the
projection matrix.

(2) Subtracting the result from x̃k to form the orthogonal
error vector e. Thus x̃k = Px̃k + e. The norm of the
error vector e, ||e||, is minimized in this process [3,
p. 365] but is never zero.

Again we observe that permuting the rows of X (equiva-
lently X̃) only permutes the elements of e but leaves ||e||
unchanged.

The relationship of Gram-Schmidt orthogonalization to
least-squares estimation is important in that, for N > D,
we can interpret feature fk as a sum of A) a fixed (and
class-independent) linear function of the previous features
and B) a residual. It is possible that some (or all) of the
previous features may be useful for classification. It is also
possible that the least-squares estimate of fk in terms of the
previous features is useful as well. However this information
is implicit in the previous features. Thus it is sufficient to
determine the added information captured in the residual.
This amounts to a statistical test1 comparing the scalar values
in e corresponding to class i with those corresponding to
class j. Nonparametric tests such as a Chi-squared test
(or Kolmogorov-Smirnov test) can be used to compare two
samples. Specifically the p-value of the test statistic can be
returned. The p-value is the probability of the event that
a value of the test statistic greater than or equal to that
observed occurs when both samples have a common proba-
bility distribution. Standard critical levels of significance are
0.05. Thus if the p-value is less than the critical level we
can safely conclude that the distribution governing the two
samples is different. A difference between the distributions
indicates that the feature may prove useful for classification.
It must be stressed that if there are only a few measurements
per class, a large p-value need not indicate distributional
similarity. However if there are enough measurements such
that p-values lower than the critical level are at least possible

1or set of pairwise tests when more than two classes are considered

then if the p-value is greater than the critical level we may
conclude fk is “approximately” affinely dependent on the
previous features. Specifically eqn. (1) with r2 = fk and
r1= [f1, f2, . . . , fk−1]T is satisfied at the reported p-value.
Graphical methods such as quantile-quantile plots can be
used to corroborate the conclusions.

The process of feature subset selection involves consider-
ing various subsets and, via a pre-chosen separability mea-
sure (a.k.a. Filter Method) or a classifier architecture (a.k.a.
Wrapper Method), ranking the quality of each subset [7],
[8]. As testing every possible subset is usually prohibitive,
alternatives that consider only specific subsets are almost
always applied. One such approach is as follows. Features
can be ranked according to p-value. If it is required that a
feature must be discarded, the feature with the largest p-
value can be selected. The entire process of Gram-Schmidt
orthogonalization followed by statistical testing is then re-
peated if further reduction is required.

V. SUMMARY

Methodologies are provided to detect exact and “approx-
imate” affine relationships within a set of features. They
provide insight into feature structure and aid in feature subset
selection.

VI. APPENDIX

Assume the affine dependence of eqn. (11) for feature fk.

fk =
D∑

j=1,j �=k

αk
j fj + bk (11)

This dependence must be enforced regardless of class. Thus

xk =
D∑

j=1,j �=k

αk
j xj + bk1N (12)

where xj is the jth column of X (j = 1, ..,D) and 1N is
the vector [1 1 . . . 1]︸ ︷︷ ︸

N

T .

Denote xj
T1N, the sum of elements in column j, as Sj .

Denote the columns of X after standardization as x̃j. Thus
x̃j equals

x̃j =
xj − µ̂j1N

σ̂j
(13)

where µ̂j = Sj

N and σ̂2
j = (xj−µ̂j1N)T (xj−µ̂j1N)

N . Rewriting
eqn. (12) in terms of x̃j results in:

σ̂kx̃k + µ̂k1N =
D∑

j=1,j �=k

αk
j (σ̂jx̃j + µ̂j1N) + bk1N (14)



Subtracting µ̂k1N from both sides of (14) yields:

σ̂kx̃k =
D∑

j=1,j �=k

αk
j σ̂jx̃j+

[
D∑

j=1,j �=k

αk
j µ̂j1N + bk1N − µ̂k1N

︸ ︷︷ ︸
Γ

]

It is clear that the vector
∑D

j=1,j �=k αk
j µ̂j1N + bk1N and

µ̂k1N can be represented as c1N and d1N respectively and
that Γ = (c − d)1N. Pre-multiplying both Γ and eqn. (12)
by 1N

T reveals that c = d. Thus

x̃k =
D∑

j=1,j �=k

α̃k
j x̃j (15)

where α̃k
j equals αk

j σ̂j/σ̂k.
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