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Preface

The development of an integrated circuit designer is a very long journey. It is
important to realize that a single course in this field does not make a person an
expert; it is one step on a very long road. The goal here is to prepare students
well enough so that on average, each individual who successfully completes the
course has achieved a minimum level of competence.

Students need to become effective in the employment of our CAD tool suite.
The CAD tools in this course consist of a circuit simulator, HSPICE, a layout
editor, magic and a switch-level digital simulator, irsim. Verification at the
primitive cell level MUST be done with a circuit simulator, HSPICE in our
case.

By completing the exercises from chapters 1-6, the student is literally walked-
through all of the steps necessary to design a full custom integrated circuit.
Students develop their own cells from hand-crafted transistors and they will use
these cells to construct larger, hierarchical circuits.

The semester project is sub-divided into two distinct phases: (1) individual
component and (2) a final semester project. The individual component requires a
similar effort to what was contained in chapters 1-6. Again, students must take
things from the hand-crafted transistor cells up through the final pad frame.
This assignment is discussed in chapter 7. The final semester project can be
done individually or in groups. At the University of Rhode Island, I prefer
to assign common class projects using groups of only two students. If each
individual has successfully completed all of the exercises then two individuals
should be able to work efficiently. Occasionally, I will allow a more experienced
graduate student to work alone or or even on an M.S. thesis project.

Students are expected to actually employ techniques for manufacturability
and economics based upon yield in the completion of their projects. We have
tried to incorporate guidance from the ABET visit to the extent that practi-
cal restrictions will allow. In order to minimize confusion I have included an
appendix which contains the background necessary to understand the role of
economics in integrated circuit design.

In future releases of this book I hope to incorporate some of the successful
projects graduate students have completed under my supervision. In at least
one of these chapters I would like to include an exercise on the verification
of the actual integrated circuit. We have fabricated additional ICs with the
permission of the MOSIS educational program and we have also constructed
some printed circuit boards to facilitate such exercises. It is also possible that
I will incorporate additional CAD tools at a later time. At the present time I

viii
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feel that exercises on the measurements of first Silicon are the highest priority.
The goal of this work as far as the individual student is concerned is to

provide the very best quality experience in a first course in integrated circuit
design.

A. J. Davis, July 2005
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Chapter 1

HSpice Part A

Lab Objectives:

§1. To familiarize students with a basic understanding of the most important
types of circuit analysis available using HSPICE and SPICE simulators.

§2. To provide instruction for the representation and testing of actual circuits
in HSPICE/SPICE.

§3. To provide a tutorial on HSPICE/SPICE commands, such as, include
statements, sub-circuits, parameters, etc.

§4. To provide an overview of the level 3 and BSIM models and how they
influence digital integrated circuit design. Also provide an overview of
customized models.

Pre Lab:

1. Read Chapter 1 of the textbook pp. 1-25.

2. Read this lab. Write out the net lists prior to the lab.

3. Review ”Recent SPICE Parameters” on the ELE 447 Course web page.
Download the ”Level 3 Model HSPICE File” and the ”BSIM3 Model
HSPICE File”.

1.1 Lab SPICE Part A Instructions.

You will be required to analyze 3 inverters, each with Ln = Lp = 2.0λ and
Wn = 4.0λ. The Wp values will be 4λ, 8λ and 12λ, respectively. Each of the
3 inverters will be simulated using the BSIM3 parameter set provided on the
course web page for Home Work 1A (and also on the lab web page).

1



2 CHAPTER 1. HSPICE PART A

1.1.1 Pre-Lab

1) Compute βn, βp using the BSIM3 parameter sets provided on the ELE448
web page (the same set used for Home Work 1A); for βn, use an n-channel
(W/L) of 4λ/2λ. For βp, use the following W

L s: 4λ/2λ, 8λ/2λ & 12λ/2λ.
This means that you will be required to compute 1 value of βn and 3 values
of βp for each parameter set. Set the capacitive load to 100fF .

2) Compute
(

βn

βp

)

for each inverter.

3) Compute (βn

βp
), compute the inverter threshold voltage using equation (A.5).

4) Copy the BSIM3 parameter sets over to your home directory. Use the .in-
clude “modelName.xxx” directive to access the model.

5) Attempt to run a DC simulation and a transient simulation for at least one
of the inverters. Note (Home Work 1 A)

1.1.2 Lab: DC Analysis

6) Measure the inverter thresholds using HSPICE DC analysis. You will need
to measure the DC transfer characteristic, Vout vs. Vin), for each of the 3
inverters. Find the inverter threshold using the graphical method described
in your home work example problem.

1.1.3 Lab: Transient Analysis

7) Measure the rising delay, falling delay, rise time and fall time for each of
the 3 inverters using each of the two parameter sets. Then compute the
propagation delay:

τp =

(

τdr + τdf
2

)

(1.1)

8) Re-simulate the inverter for (W/L)n of 4λ/2λ and (W/L)p of 8λ/2λ using a
capacitive load of 1pF . Measure the rise time and fall time. Estimate the
value of Rp and Rn.

1.1.4 Lab: Operating Point and Transient Analysis

9) Insert another n-channel device between the source of the n-channel tran-
sistor in the inverter and the ground. This provides 2 n-channel devices in
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series and a single p-channel device. Draw the schematic and write out the
net list. This is shown in figure 1.2. What are the substrates connected to
in the stacked n-channel transistors ?? Connect the lower inverter gate to
VDD. Connect the inverter input to 2.5 Volts. Use Wp = 8.0λ.

Vin

Gnd

Vout

C
L

M2

M1

Vdd

Gnd

2

1

3

0

Figure 1.1: Net list labeling for the CMOS inverter with a capacitive load.

Vin

Gnd

C
L

Vdd

?

+5V

Vout

M3

M2

M1

Gnd

Figure 1.2: Modified inverter for part 6.

i) Compare the value of VBS for the n-channel transistor represented by
the net list in figure 1.1 with this inverter. What is different ?

ii) Measure the rising delay, the falling delay, the rise and the fall time of
this inverter. Compute the propagation delay. Compare this result with
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the inverter from figure A.3 which uses Wp = 12µm. Is this different ?
Why ?

1.2 Problems.

1) The nMOS transistor depicted in figure A.4 has its current flowing from the
drain (A) to the source (B). Suppose the direction of the current is reversed;
in other words, reversal means that current now flows from the region labeled
(B) to the region labeled (A). What happens to the drain and source ? How
is the substrate biased (e.g. what voltage) ?

2) Assume the device in figure A.4 is now a pMOS transistor. Can you identify
the source and drain terminals ? What is the substrate biased ?

3) If we assume that Vtn = −Vtp, what ratio
(

βn

βp

)

is required for VINV th =
(

VDD

2

)

?

4) Using your resulting βn and βp from the previous problem, find Wn and Wp

assuming that µn = 2.5µp.

1.3 Lab Report Instructions

The lab reporting is designed to be as painless as possible. You must tar-zip
your working directory and submit it according to instructions provided in the
lab; this compressed directory tree, once expanded should provide reproducible
results for anything performed during the lab. An electronic copy of your lab
report, in pdf-format, should be included in your compressed directory.

The written report should be produced on a word processor and should also
be made available as a hard copy. Please be sure to include your name.

You must summarize your results from the lab as illustrated in the tables
below:

1) The first tables, Tables 1.1 & 1.2 can and should be completed prior to
your scheduled lab date. The information required in Table 1.1 can be ob-
tained from the parameters TOX, U0 and VT0 included in the CMOSN and
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CMOSP models used in your lab (for both Level 3 and BSIM3). The units
are provided for your convenience and these are standard to these SPICE
models. Please note that the oxide thickness, tox or TOX, will be identical
for the respective n-channel and p-channel transistor.

Model Parameter BSIM3 Model Units
tox m

µn
cm2

V olt−Sec

µp
cm2

V olt−Sec

VT0n V olts
VT0p V olts

Table 1.1: Model parameters from the BSIM3 file.

The values in the second table, Table 1.2, will require the insertion of the
parameters obtained from Table 1.1 into the equations listed in this chapter.
You will need to track the units and record them properly.

Model Parameter BSIM3 Model Units
Cox

κPn

κPp

βn

βp(Wp = 4µm)
βp(Wp = 8µm)
βp(Wp = 12µm)

Table 1.2: Computed model parameters from the BSIM3 file.

2) The inverter voltage thresholds, e.g. the trip-points, are to be recorded in
Tables 1.3. Note that this table requires you to compute the inverter voltage
thresholds and also record your measurements from the lab. The measured
values are obtained using the graphical methods described earlier in this
chapter.

3) Timing measurements using the transient analysis are to be recorded in Ta-
ble 1.4. Note that the propagation delay, τp, is obtained from the average
of the rising and falling delay times (e.g. τdr & τdf ). Make these results
accurate to 3 digits.

4) Using the values of Rp and Rn, compute the rise time and fall time for each
of the inverters. You will need to now use the 100fF load for CL; Rp can be
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Model BSIM3 Units
Inverter Ratio Computed Measured
(

βn

βp

)

1
V olts

(

βn

βp

)

2
V olts

(

βn

βp

)

3
V olts

Table 1.3: Inverter threshold voltages (e.g. trip points) vs.
(

βn

βp

)

.

scaled in proportion with Wp in order to account for the other values used
forWp. Compare these values with the simulated values for rise and fall time.

Inverter Ratio τdr τdf τp Trise Tfall
(

βn

βp

)

1
nSec

(

βn

βp

)

2
nSec

(

βn

βp

)

3
nSec

Table 1.4: Timing measurements vs.
(

βn

βp

)

for BSIM3 model parameters.

5) The last circuit from part 6, figure 1.2 contains 3 transistors, a pair of series
connected n-channel transistors and one p-channel transistor. Record the
transistor threshold voltage, (VT ), from HSPICE (operating point analysis)
for each transistor. Compaire both n-channel transistors with the VT0 value
obtained from the model parameter list (which you have listed in Table 1.1)
in Table 1.5.

Model BSIM3 Units
Transistor VT0 VBS VT

M1 V olts
M2 V olts
M3 V olts

Table 1.5: Transistor thresholds obtained from operating point analysis.
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6) Record the delay and rise time/fall time measurements (using transient anal-
ysis) in Table 1.6 below:

Model Parameter Set τdr τdf τp Trise Tfall

Level 3 nSec
BSIM3 nSec

Table 1.6: Timing measurements of final circuit.

7) Review the problems following the lab.
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Chapter 2

HSpice Part B

Lab Objectives:

§1. To gain experience in the design and simulation of a ring oscillator.

§2. To provide basic techniques for the simulation of loop structures.

§3. To continue to learn how to use the analysis tools available in HSPICE/SPICE
in an efficient manner. Also to learn HSPICE/SPICE ”short cuts” using
.include, .subckt, .measure and .param directives.

Pre Lab:

1. Complete the Lab assignment for HSpice Part A.

2. Read this lab. Perform necessary computations and prepare the net lists.

3. Review ”Recent SPICE Parameters” on the ELE 447 web page. Download
the ”Level 3 Model HSPICE File” and the ”BSIM3 Model HSPICE File”.
Notice there are 2 sets of Level 3 and BSIM3 parameter files for this lab.

2.1 Background.

Benchmarking is of paramount importance in digital design. Sub-circuits with
timing specifications which impact the overall system must be carefully ana-
lyzed. The speed of a simple circuit common to all wafer fabrication runs can
be used in estimating timing limits for a particular design. Inverters are often
used for this purpose since the performance of most static gates can be estimated
from the performance of this circuit.

The approach used in the previous lab was to measure the time delay of
a single inverter with a known load capacitance. This is difficult to compare
with a physical circuit since gate delays are not easy to measure directly. An
alternative approach is to measure the total delay of a number of cascaded
inverters (e.g. a chain). Still, a more practical approach, which is the topic of
this lab, is to measure the frequency of an oscillator realized from inverters in

9
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a closed loop (e.g. connecting the last inverter output in the chain back to the
first inverter input).

Oscillators are circuits which generate waveforms at a fixed frequency. A
ring oscillator can be constructed by connecting an odd number of inverters in
a loop. If properly designed, a loop of inverters can be made to change state
at a constant frequency. The propagation delay for a single inverter can easily
be inferred from the frequency of a ring oscillator since they are related. This
means that the frequency of the same ring oscillator (e.g. with an identical
number of equally sized inverters) will serve as a comparative measure of the
possible speed over wafers from the same process.

The frequency of a given ring oscillator will vary with each wafer fabricated.
A unique set of level 3 and BSIM3 parameters are extracted from each wafer.
MOSIS will compare the simulated results using HSPICE with the measured
results for the 31 stage ring oscillator. On the ELE 447 web page, under Recent
SPICE parameters you will find the frequency of oscillation for a 31 stage ring
oscillator in the 1.6 µm, double poly process. This is measured for each wafer
fabricated. If enough wafers are sampled then the fast, slow and typical ring
oscillator frequencies can be estimated.

A CMOS ring oscillator is an example of a circuit which can cause problems
when simulating with SPICE. The major obstacle is successfully computing the
operating point while the inverters are connected in a ring. This tends to lead
to convergence/non-convergence errors. There are simple solutions to eliminate
these problems. One solution is to vary the power supply voltage during the
start of the simulation. Another technique is to assign voltage levels to each
inverter output since SPICE allows one to set either initial conditions or node
voltages at time t = 0. Still another solution, the one we will use for this lab,
is to break the loop at time t = 0. This is done long enough to allow SPICE to
compute the operating point prior to the simulation. Once a sufficient amount of
time has passed the loop is then closed and the ring oscillator can be simulated.

Obtaining good agreement between the simulation and measurement of the
ring oscillator is not a simple task. Additional buffers and monolithic compo-
nents must be added to provide a reliable means of comparing the measurements
to the predictions from the circuit simulation. Reliable measurements of the os-
cillator frequency can be performed albeit difficult.

We will take a closer look at the ring oscillator in the next section.

2.2 The Ring Oscillator

When several inverters are cascaded (e.g. the output of the preceding inverter
is connected to the input of the succeeding inverter) and the output of the final
inverter is connected to the input of the first inverter forming a loop there are
two possibilities:

(1) Bi-State Stability: The value of V1, once set, is stable for a loop with an
even number of inverters. Thus, the logic state at the output of each in-
verter is fixed as long as the supply voltages are maintained (assuming that
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there are no external voltages applied to V1 or V2). Since V1 and V2 can
each have values of a logic ”1” or a logic ”0”, a loop constructed from a pair
of inverters will be inherently stable once the voltages, V1 and/or V2, are
set to either the supply rail or ground. The simplest example is the static
latch shown in figure 2.1.

1V V2

Figure 2.1: A loop formed by 2 inverters will store V1 and V2.

(2) Oscillation: If an odd number of inverters are connected in a loop the output
of each inverter, V2 for example, will toggle from a logic ”1” to a logic ”0”
and back continuously; it is an oscillator. This can easily be seen for the
loop of 3 inverters shown in figure 2.2.

1V V2

Figure 2.2: A loop formed by 3 inverters.

A loop composed of an odd number of inverters is known as a ”ring oscillator”.
Analysis of the ring oscillator is quite simple. Let us assume that we have

n inverters, where n is odd. The output of the first inverter will be a logic ”1”,
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when its input is a logic ”0”. If take the output of the inverters which follow all
the way back to the first integrator input, we will find that the input is now a
logic ”1”, forcing a logic ”0” at its output. If we assume that the delay of each
inverter is identical and given by τd, then, for n inverters the a total delay given
by

τd,n = nτd (2.1)

for each logic state change in a particular inverter in the loop. The oscilla-
tion period, T , would require 2 logic state changes for a given inverter and is
expressed as

T = 2nτd (2.2)

yielding the oscillator frequency,

f =
1

T
=

1

2nτd
(2.3)

Equation (2.3) relates the oscillator frequency, f , to the number of inverters,
n, and the delay of each specific inverter, τd. Increasing the delay of the inverter
or increasing the number of inverters in the loop will result in lowering the
oscillator frequency.

Vin

Gnd

Vout

CM2

M1

Vdd

Gnd

p

2

1

3

0

Figure 2.3: CMOS inverter with the netlist nodes labeled.

The characteristics of the inverter which influence τd will have a direct effect
on the oscillator frequency. The inverter you studied in last weeks lab is shown
in figure 2.3. Parasitic capacitances, which depend on the geometry of the source
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and drain, will affect performance. Since these are typically not known during
the early design phases, the load capacitor, Cp, will represent the parasitics. If
the device sizes of the inverter, (W/L)p and (W/L)n, are increased the inverter
will pull up and pull down faster for a fixed capacitive load. Thus, when τd
is reduced, the oscillator frequency will increase. On the other hand, when Cp

is increased, τd will increase and the frequency of oscillation will be reduced.
This relationship is given by equation (2.4), where the frequency of oscillation
is inversely proportional to the capacitive loading on the inverter.

f ∝ 1

Cp
(2.4)

Care must be taken when assuming that Cp remains fixed when transistor
geometries are increased. Increasing in Wp or Wn will increase the gate and
drain capacitance for the p-channel and n-channel transistors. This means that
Cp actually will increase when Wp or Wn increases. The question of a “speed
up” depends upon the ratio of the output current of the inverter and the new
value of Cp. If the change in Cp resulting from increasingWp and/orWn is small
relative to its original value or if there is an additional capacitor (e.g. poly2-
poly1 capacitor) which is much larger than the sum of the drain capacitances
the assumption is reasonable. In most cases the only capacitive load is that of
the transistor parasitics; this means performance will be limited at best when
transistor widths are increased.

The ring oscillator is often used as a clock source for digital circuits and
for some sampled, analog circuits. There are practical limitations which have
not been discussed and will need to be considered when the ring oscillator is
employed as a clock circuit. At least 7 integrators are needed to guarantee
that a a ring oscillator implemented with CMOS inverters will work reliably.
The power supply can have an influence on frequency stability and clock jitter.
This is especially true when using CMOS integrators[1]. One improvement is to
replace the CMOS inverter with a differential inverter[2]. The advantages of the
differential inverter: (1) a ring oscillator can be formed with an even number of
differential integrators and (2) most important, differential circuits offer better
noise immunity and are less sensitive to power supply noise[1, 2].

2.3 Simulation of the Ring Oscillator in SPICE.

In this lab you will be analyzing a ring oscillator realized by a loop of 11 identical
CMOS inverters. In the previous lab you learned about netlists. You should
certainly be able to write the netlist for 11 inverters; however, managing a netlist
composed of many identical circuits becomes a cumbersome task. Suppose you
wish to change a device geometry ? Then you will need to change that value in
11 or more lines within the netlist. Suppose you wish to realize a ring oscillator
this time with 31 inverters ? One can easily see that it is simpler to build a
single inverter netlist; this enables the realization of a repeated circuit using
only a single netlist and some calls to that netlist. The sub-circuit statement
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provides a reusable, unique circuit. This simplifies the task of using multiple
copies of the same circuit and minimizes simulation problems due to errors in
the netlist.

2.3.1 The .subckt Statement.

If there is a circuit which is to be used repetitively then a sub-circuit can be
formed. This will allow you to reuse a circuit that you specify once. Should you
make a mistake with the circuit then you will only need to correct a single part
of the netlist.

To implement a sub-circuit, you will place the circuit netlist between the
.subckt statement and the .ends statement. The .subckt statement must contain
the circuit name and the external node(s)[3]. There is virtually no limit in the
complexity of the circuit contained within the .subckt and .ends statements[3].
For example, to place the inverter in figure 3 within a sub-circuit, the following
lines are needed:

.subckt INVA Vout Vin Vdd Vss
* D G S SS Model W L *
M1 Vout Vin Vdd Vdd CMOSP W=10u L=2u
M2 Vout Vin Vss Vss CMOSN W=4u L=2u
CL1 Vout Vss .1pF

.ends INVA

These lines must be placed within your netlist. With the sub-circuit state-
ments included into the netlist, you can now use:

X1 node(Vout) node(Vin) node(Vdd) node(Vss) INVA

for each instance of the inverter, INVA. The Xn device name is reserved for
sub-circuits[3] and there must be a unique number for each device. The node
numbers, e.g. node(Vout), refer to the numbers or characters used to describe
the node connection external to the sub-circuit. Node connections within the
sub-circuit are local only to the sub-circuit[3]. The modularity can be extended
by placing the inverter sub-circuit into a separate file, then using the .include
statement to load the sub-circuit into the main netlist.

2.3.2 Netlist Implementation of the Ring Oscillator.

The netlist for the 11 inverters is quite simple. However, you must leave enough
time for SPICE to compute the operating point. This can be done by incorpo-
rating a switch to open while the operating point is calculated, and then close
the loop after a short time. A simple solution is to place an n-channel pass
transistor between the 11th and the 1st integrators. At the start of the simula-
tion the switch will be open. After 5-10 nsec, the switch close forming the loop.
This approach is illustrated in figure 2.4.



2.3. SIMULATION OF THE RING OSCILLATOR IN SPICE. 15

Von

+
−

Von

Figure 2.4: The SPICE implementation of the 11 stage ring oscillator.

You will need a signal source at the gate of the n-channel transistor. The
wave form for the signal source is also given in figure 2.4. For a short time
the gate of the n-channel pass transistor switch is in the logic ”0” state, or at
ground. After the first few nano-seconds, the gate of the n-channel switch moves
from the logic ”0” to the logic ”1” state, or Vdd. The waveform at the gate of
the n-channel switch can be synthesized either from the pulse or the piece-wise
linear signal source.

2.3.3 .MEASURE Statements

It is possible to automatically measure specific results of a simulation. The
advantage of doing this is that HSPICE can be run directly from the command
line. This allows one to simulate a circuit while varying parameters much more
efficiently than by analyzing the graphs by hand.

Refer to figure 2.5):

. . . . . .node (13)node (12)

Figure 2.5: Measure statement example.

The following statements will allow one to measure the ring oscillator rising
and falling delays, the period and the frequency at several nodes. This can be



16 CHAPTER 2. HSPICE PART B

accomplished by using the following statements (this example assumes the node
names given in figure 2.5):

.Measure TDlyf Trig V(10) VAL=2.5V Rise=2
+ Targ V(11) VAL=2.5V Fall=2
.Measure TDlyr Trig V(10) VAL=2.5V Fall=2
+ Targ V(11) VAL=2.5V Rise=2
.Measure T1 Trig V(12) VAL=2.5V Rise=1
+ Targ V(12) VAL=2.5V Rise=2
.Measure T2 Trig V(12) VAL=2.5V Rise=2
+ Targ V(12) VAL=2.5V Rise=3
.Measure T3 Trig V(12) VAL=2.5V Rise=3
+ Targ V(12) VAL=2.5V Rise=4
.Measure T4 Trig V(12) VAL=2.5V Rise=4
+ Targ V(12) VAL=2.5V Rise=5
.Measure T5 Trig V(12) VAL=2.5V Rise=5
+ Targ V(12) VAL=2.5V Rise=6

.Measure Freq1 Param=’1/T1’

.Measure Freq2 Param=’1/T2’

.Measure Freq3 Param=’1/T3’

.Measure Freq4 Param=’1/T4’

.Measure Freq5 Param=’1/T5’

You will need to incorporate these measure statements into your spice deck
in order to complete this lab quickly.

2.3.4 Accurate Inveter Measurements

We will also need to measure the common inverter used in the ring oscillator. In
the previous lab we measured several inverters using the input signal directly.
This will yield an inaccurate result when we are interested in making compar-
isons between the measured inverter delay and the inverter delay within the ring
oscillator. The rise and fall time of the signal driving the inverter will change the
delay. This can be adjusted with the pulse statement but there are additional
problems; one problem is arriving at a reasonable estimate of the initial rise and
fall time. Since the ring oscillator inverter is driven by an identical inverter, it
makes more practical sense to drive the inverter we are interested in measuring
with a buffer. A simple buffer can be constructed from a cascade of inverters
which are identical to the inverter we are testing. This is shown in figure 2.6.

This is easily done using the sub circuit statement in the same way it was
described for the ring oscillator frequency measurement.
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VoutinV

CL

Simple Buffer Device Under Test (DUT) 

Cin

Figure 2.6: Measure statement example.

2.4 Lab SPICE Part B Instructions.

In this lab we will want to directly measure inveter delays in our ring oscillator.
We also want to measure the frequency and period of the ring oscillator at
several nodes. We want to also make a direct measurement of an inveter delay.
Finally, we will compare the inverter delay estimated from the ring oscillator
period with that of the two direct inverter delay measurements.

You will be looking at three 11 stage ring oscillators. The first two ring
oscillators will use the n-channel pass transistor switch to open and close the
loop. The parasitic drain capacitance will be simulated with a load capacitor. In
the third ring oscillator we will replace the the pass transistor and one inverter
with a NAND gate. The NAND gate will allow us to open and then close this
loop. The inverters and the NAND gate will employ source and drain geometries
which will allow HSPICE to compute the parasitic capacitances.

2.4.1 Prelab

1) Download all 4 sets of model parameters. You should have the two parameter
sets from the previous lab with two additional sets for this lab.

2) For the inverters in the ring oscillator, use: Wn=4λ, Wp=8λ and for Ln =
Lp=2λ Scale these values using scale=0.3u with the option statement (in your
netlist); this means that Wn=1.2µm, Wp=2.4µm and Ln = Lp=0.6µm.

3) Copy TOX, U0 and VT0 for each set of model parameters. Compute βn,βp,
and the inverter thresholds for each set of model parameters (note: you have
already completed this for the first parameter set in the previous lab).

4) Create your sub circuit using the load capacitance of 75 fF (from figure 2.3).

5) Complete the netlist with the measure statements; get it debugged and work-
ing.

2.4.2 Lab: Ring Oscillator 1

6) Prior to performing all of the measurements, use cscope to verify that your
measure statements are actually yielding accurate results. Also, plot the
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voltage vs. time for the output of the pass transistor switch. Save this plot
for your report.

7) For each set of model parameters measure the inverter threshold, the rising
delay and the falling delay, using the circuit described in figure 2.6. This can
be performed using the measure statement.

8) For each set of model parameters measure the inverter rising delay, falling
delay, the oscillator period and frequency. Perform the period and frequency
measurements at several nodes. This will also be performed using measure
statements.

2.4.3 Lab: Ring Oscillator 2

9) Replace the n-channel pass transistor switch and the first inverter in your
ring oscillator (the area inside the box in figure 2.4) with a nand gate as
shown in figure 2.7.

Von

+
−

Von

Figure 2.7: The 11 stage ring oscillator using a nand gate reset.

10) Use the following sub circuits for the inverter and the nand gate for the ring
oscillator depicted in figure 2.7. Notice that the dimensions are in λ; use the
scale directive to properly handle the device sizes.

.subckt INVA Vout Vin Vdd Vss
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* D G S SS Model W L Area D Per D Area S Per S
M1 Vout Vin Vdd Vdd CMOSP W=8 L=2 AD=48 PD=20 AS=48 PS=20
M2 Vout Vin Vss Vss CMOSN W=4 L=2 AD=24 PD=16 AS=24 PS=16

.ends INVA

.subckt NANDA Vnand Va Vb Vdd Vss
* D G S SS Model W L Area D Per D Area S Per S
M1 Vnand Va Vdd Vdd CMOSP W=8 L=2 AD=24 PD=6 AS=48 PS=20
M2 Vnand Vb Vdd Vdd CMOSP W=8 L=2 AD=24 PD=6 AS=48 PS=20
M3 Vnand Va V2 Vss CMOSN W=8 L=2 AD=48 PD=20 AS=12 PS=3
M4 V2 Vb Vss Vss CMOSN W=8 L=2 AD=12 PD=3 AS=48 PS=20

.ends NANDA

11) For each set of model parameters measure the inverter threshold, the rising
delay and the falling delay, using the circuit described in figure 2.6. This
can and should be performed using the measure statement. Compute the
propagation delay.

12) For each set of model parameters measure the inverter rising delay, falling
delay, the oscillator period and frequency. Perform the period and frequency
measurements at several nodes. This should also be performed using mea-
sure statements. Compute the propagation delay and compute the estimate
of the propagation delay.

13) Compute the ratio of the propagation delay from the ring oscillators to that
of the propagation delay measured for each inverter.

2.5 Problems.

1) Which type of analysis did you use to measure the period of the ring oscil-
lator ? Why ?

2) Explain why the propagation delay estimated from the ring oscillator is
greater than that directly measured from the inverter. How could this be
quantified for all three ring oscillators analyzed ?

3) Find the maximum and minimum output voltages from your cscope plot of
the pass transistor output. Can you explain why this happens ?
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4) In the final part of the lab, when the value of CL was changed, compute the
expected frequency of the ring Oscillator for each CL. Is it in good agree-
ment ?? Please explain.

5) Construct a level 1 model. Analyze the DC transfer characteristic of the
inverter with Wn = 1.2µm, Wp = 3µm and Ln = Lp = 0.6µm. Simulate the
same inverter using the first set of level 3 and BSIM3 parameters provided.
Then overlay the 3 DC transfer characteristics. Use the following level 1
model parameters in your include statement:

.MODEL CMOSN NMOS LEVEL=1 TOX=3.0500E-08 VTO=0.7000 UO=500

.MODEL CMOSP PMOS LEVEL=1 TOX=3.0500E-08 VTO=-0.7000 UO=250

2.6 Report Format

1) The first tables, Tables 2.1 & 2.2 can and should be completed prior to your
scheduled lab date; this is nearly identical to what was done in the previous
lab. In fact, much of what had been completed for the first two model sets
used in that lab can be copied. The information required in Table 1.1 can be
obtained from the parameters TOX, U0 and VT0 included in the CMOSN
and CMOSP models used in your lab (for both Level 3 and BSIM3). The
units are provided for your convenience and these are standard to these
SPICE models. Please note that the oxide thickness, tox or TOX, will be
identical for the respective n-channel and p-channel transistor.

Model Parameter BSIM3 BSIM3 Units
tox m

µn
cm2

V olt−Sec

µp
cm2

V olt−Sec

V T 0n V olts
V T 0p V olts

Table 2.1: Model parameters from BSIM3 models.

The values in the second table, Table 1.2, will require the insertion of the
parameters obtained from Table 1.1 into the equations listed in this chapter.
You will need to track the units and record them properly.

2) Summarize the measurements of each ring oscillator (and each inverter) for
each model. This information is illustrated in Tables 2.3 through 2.4.

Table 2.3 summarizes the results for Ring Oscillator-1. Table 2.4 summarizes
the results for Ring Oscillator-2 using the inverter with drain and source
geometries added.
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Model Parameter BSIM3 BSIM3 Units
Cox

κPn

κPp

βn

βp

Table 2.2: Computed model parameters from Level 3 & BSIM3 models.

inverter load Ring Oscillator Circuit Inverter-1 Ratios

F T τ̂dp τdf τdr τp τdf τdr τp
ˆtaup

τp−inv

τp−r

τp−inv

Model MHz nSec nSec nSec nSec nSec nSec nSec nSec

t56-b.BSIM3

t55-q.BSIM3

Table 2.3: Analysis of Ring Oscillator-1 for inv-1.

CL Geom. Ring Oscillator Circuit Inverter-1 Ratios

F T τ̂dp τdf τdr τp τdf τdr τp
ˆtaup

τp−inv

τp−r

τp−inv

Model MHz nSec nSec nSec nSec nSec nSec nSec nSec

t56-b.BSIM3

t55-q.BSIM3

Table 2.4: Analysis of Ring Oscillator-2 for inv-2.

3) Complete the problems at the end of the lab write up.
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Chapter 3

Magic Part A

Lab Objectives:

§1. To learn basic CMOS NWell processing steps and how it relates to the
layers in the layout editor.

§2. To provide some instruction on the layout of individual, parallel and series
n-channel and p-channel transistors.

§3. Begin training using the magic layout editor, its most basic tools.

§4. To provide instruction and exercise in the synthesis of simple logic cells
from hand-crafted transistors.

§5. To gain experience in layout verification via HSPICE/SPICE simulation
of extracted layouts.

Pre Lab:

1. Read Chapter 2 of the textbook pp. 35-59. Pay special attention to the
section 2.3 CMOS Layout and Design Rules, pp. 48-59.

2. Study the layout of inverters, Nand Gates and geometries. Read over
homework problem (9) from homework 1.

3. Read this lab carefully.

4. Try running magic and executing basic magic commands. Read magic
tutorials 1, 2 and 3 (in tutorial 3, read up to section 2.5). Try some of the
exercises in the tutorials provided with magic.

3.1 Background

Integrated circuit design requires a sophisticated set of computer aided design
(CAD) tools. The previous labs provided insight into circuit simulation us-
ing HSPICE. Circuit simulation, albeit important, is just one software package

23
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Magic
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This is our problem !!!

(Analog) (Digital)

Figure 3.1: The Design Environment for ELE 447.

within a suite of tools. Figure 3.1 provides a complete description of the design
environment we will be using in this course.

There must be a high-level description (HLD) of the IC. As a design nears
completion, every aspect will be contained within the HLD. The HLD can be
composed of more than one tool. If we were designing a digital filter, for exam-
ple, MATLAB m-files would typically be employed in the earliest design phase.
A VHDL editor or some other type of HLD language becomes necessary as the
design increases in complexity. This allows for digital simulation of the HLD.
Since the projects in ELE 447 are simple in scope, our HLD will consist of a
carefully labeled schematic. The schematic is translated to a drawing of the
abstract layers needed be the foundry to fabricate the circuits. These drawings
are known as layouts and the automated tool for drawing layouts is a layout
editor. Our layout editor, which is the topic of this and the next 3 labs, is called
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magic[1].

Magic provides a mask oriented description of the HLD circuit. The layout
editor is hierarchical; this extends the complexity of its design capabilities and
it allows for the inclusion of library cells. The magic layout editor uses the
Mead and Conway scalable design rules[2] based on dimensionless units (λ).
The layers in magic differ from the actual mask layers. While some are identical
magic includes pseudo layers. In addition, some layers are added automatically
when the mask layers are prepared for fabrication. The interactive design rule
checker immediately alerts the user of design rule violations. Many different
sets of design rules can be included. This allows magic to accommodate many
different IC fabrication technologies. Design rules and mask layer translation are
facilitated by tech files as shown in figure 3.1. Layouts can be extracted to circuit
simulators like HSPICE/SPICE and logic simulators such as irsim. Parasitics
within the layout can be included via the extraction software. The mask sets
can be formatted for the CalTech Intermediate Format (CIF) or GDSII. Magic
layouts can also be plotted as shown in figure 3.1.

Magic cannot be completely digested in a single day. Our approach is to pro-
vide you with several projects which gradually use most of the features needed
to fabricate a design. We start with simple gates at the cell level; not all of the
features of magic are needed in this first lab.

In the sections that follow, a brief review of the development of magic is in
section 2. The most important layers you will need to construct logic gates are
introduced in section 3, Magic Layers. Section 4 provides guidance for drawing
transistors in magic. The lab instructions and questions are in sections 5 & 6.

3.2 A Brief History of Magic

Magic was developed during the early 1980’s at the University of California,
Berkeley[1]. The software development was funded by the U.S. Government
which required that the software be made available to the public free of charge
with the source code. Magic Version 4 was distributed on tape along with other
Berkeley Software tools in 1986. The first versions of magic were not compatible
with X-Windows, which was being developed under the name “Project Athena”
during the mid 1980s. Later versions, 6 and higher, incorporated X windows.
The Government funding for the software development and maintenance ended
in the early 1990s.

The popularity of magic has soared during the late 1990s. With the widening
popularity of the Web and public domain Unix software, the number of magic
users has increased significantly. Public domain developers have extended the
life of magic well past the last official build, version 6.5. The latest release of
magic is 7.1 and it is expected to continue to evolve.
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3.3 Magic Layers

In magic, grid-spacing is measured in λ, dimensionless, scalable units. The
relationship between λ and the minimum feature size is:

Minimum Drawn Feature Size = 2λ
Thus, for the 1.2 µm process, λ = 0.6 µm. The layers in magic (with the

exception of pads) conform to this relation. This allows for scalable design
rules[2, 3, 4]. The most important layers in magic for drawing cells in the 1.2
µm double-poly CMOS process are shown in figure 3.2.

pdiff

ndiff

poly

m1

m2

pdiffc

ndiffc

nnc

ppc

pc

via

Figure 3.2: Magic layers.

The layers used to realize transistors and to route signals are listed in ta-
ble 3.1:

Magic Abbr. Layer Name
pdiff p-diffusion
ndiff n-diffusion
poly polysilicon
m1 metal 1
m2 metal 2

Table 3.1: Routing/Active Layers in Magic.

The n-diffusion and p-diffusion layers are collectively referred to as “active”
layers. This terminology reflects that every time polysilicon crosses an active
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layer a transistor is formed. The N-Well layer which is needed for the p-channel
transistor is not shown but it is available in magic. This layer is not frequently
used in digital designs because it is automatically generated when the magic
layout is converted into CIF or GDSII for wafer processing. The metal-1 and
metal-2 layers provide for routing signals and buses.

Electrical connections must be made between the layers used to paint tran-
sistors and routing lines. When diffusion or polysilicon are connected to a metal
layer, the electrical connection is referred to as a contact. Two metal layers are
connected by a special contact known as a via.

The layers in magic which provide electrical connections between different
active/routing layers for the 1.2 µm CMOS process are listed in table 3.2:

Magic Abbr. Layer Name
pdiffc, ndiffc diffusion contact (p or n) between diffusion and m1
nnc, ppc substrate contacts connect the substrate to m1
pc poly contact connects polysilicon to m1
via via connects m1 to m2

Table 3.2: Connecting Layers in Magic.

LAYER CIF LAYER NAME CALMA NUMBER
Well CWG 14
N-well CWN 1
P-well CWP 2
Active CAA 3
Select CSG 15
P-select CSP 8
N-select CSN 7
Poly CPG 4
Poly Contact CCP 45
Poly 2 (Electrode) CEL 5
Electrode Contact CCE 55
Active Contact CCA 35
Metal 1 CMF 10
Via CVA 11
Metal 2 CMS 12
Overglass COG 13

Table 3.3: Mask layers for 1.2 µm double-poly CMOS process.

There are additional layers and contacts provided by magic. Sub-micrometer
semiconductor processes have 4-6 metal layers while analog processes, like the
1.2 µm CMOS we will be using, have a second polysilicon layer. The additional
metal layers are used for routing. In an analog IC process resistors can be
fabricated by a serpentine polysilicon line. Capacitors are typically formed
using the two polysilicon layers. Polysilicon is often referred to as “poly”.
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The abstract layers within magic allow greater flexibility than designing
directly with the mask layers. However, prior to submitting a design for fabri-
cation the abstract layers must be converted to the mask layers. Standard file
formats adopted by foundries are used to represent the mask level design. Two
common formats are CIF and GDSII. Table 3.3 lists the CIF and GDS II layer
assignments.

The CIF layers can be viewed in magic. There are two ways to do this: (1)
create a cif file for submission then open the cif file in magic or (2) use the
command :cif see layer to view a specific layer. It is important to recognize the
differences between the magic layout editor and the masks used for fabrication.

3.4 MOS Transistors in Magic

NMOS transistors are formed by crossing the n-diffusion layer with the polysil-
icon layer. PMOS transistors are formed by crossing the p-diffusion layer with
the polysilicon layer. This is illustrated in figure 3.3. Magic must create a new
layer in the area where polysilicon crosses diffusion. This is necessary to pre-
vent heavy doping in the channel. Typically, the channel has some doping for
threshold adjustments, but it is significantly different than what is required for
the source and drain connections.

W

L Poly

ndiff
pdiff

W

L

Figure 3.3: Magic layout representation of an n-channel and p-channel transis-
tor.

Many of the simple gates, e.g. NAND, NOR, AND, OR require parallel and
series connections of n-channel and p-channel transistors. Figure 3.4 shows sev-
eral possible options for connecting series transistors: (1) connect the drain and
source using metal 1 (m1); this requires two diffusion contacts, (2) connect the
drain and source with a single diffusion contact or (3) make a direct connection
using only diffusion.

The latter option is desirable in minimizing the size of the drain and source
since the respective parasitic capacitance will grow in proportion to their size.
This will not be possible if you need to make a metal connection between the
transistors. A metal connection will require you to leave enough room for a
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ndiff Contact

ndiff Contact

Metal  1

Figure 3.4: Possible layout geometries for series transistors.

diffusion contact. You should always avoid the first approach unless there is a
good reason to do so since there is no additional utility and it decreases area-
efficiency and speed.

The dashed lines for each alternative in figure 3.4 show the region of the drain
and source contributing to their respective capacitance. Thus, the first option
is almost never used since the capacitance is much larger. The third option
minimizes the effective capacitance by minimizing the geometry and combining
the drain of the first transistor with the source of the second transistor. If a
metal connection is required, the second option must be selected. We will learn
how these connections affect the design of simple gates.

3.5 Lab Instructions

In this lab you will design, extract and simulate a CMOS inverter, a 2 input
CMOS NAND gate and a 4 input CMOS NAND gate. It is important to read
over these instructions and to prepare for this lab by completing tutorials 1, 2
and 3. Instructions are provided but they are not explicit. There are multiple
options for almost any drawing step in magic. You are expected to identify the
option which suits you best on your own time prior to the laboratory period.

3.5.1 Magic Commands

The documentation for using magic is enclosed in reference [1]. The sections
which describe the use of actual commands within magic are contained in 11
tutorials. You will notice that our web page provides links to all tutorials. For
this lab, it is important that you read over tutorials 1, 2, and 3. Links are also
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provided to these specific tutorials in the Magic Part A Web Page in order for
you to find them and read them thoroughly.

The following section contains the instructions for this lab. Whenever an
instruction is started with a “:”, this is a command that you can type in on
the magic command line. It will be assumed that you understand how to draw
boxes, paint inside boxes, copy drawings, move drawings, undo mistakes, re-do
undo’s, orient layouts and the associated macros. In addition, it is expected
that you understand how to switch between magic tool bars. You should know
what the wiring tool is and how to use it.

In this lab, you will be provided with nearly all of the drawing instructions
necessary to complete your layouts. This is done in order to allow you to
focus on the use of the magic commands needed in order to realize simple
cells. You should practice this lab at home after the lab is completed. It is
especially important to do this if you experience problems in accomplishing this
lab assignment. After this lab, it will be assumed that you can ALWAYS draw
a layout, extract it and verify the layout using HSPICE.

3.5.2 Layout of the CMOS Inverter

The layout and HSPICE verification of a simple CMOS inverter can be com-
pleted by following the steps outlined:

1) start magic; use the command: magic447.

2) Draw a box 8λ high x 12λ wide.

3) :paint pdiff

4) Draw a box exactly 15 λ below the first one, 4λ high x 12λ wide.

5) :paint ndiff.

6) Draw the Vdd rail:

i) Draw a box 4λ high and 12λ wide exactly 4λ above the p-diffusion.

ii) :paint m1

7) Draw the ground rail:

i) Draw a box, 4λ high x12λ wide, exactly 4λ below the n-diffusion.

ii) :paint m1

The layout in the drawing palette in magic should now be identical to the
layout shown in figure 3.5.

8) Draw a box 8λ high x 4λ wide at the leftmost edge of the p-diffusion.

9) :paint pdiffc

10) Draw a box 8λ high x 4λ wide at the rightmost edge of the p-diffusion.
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Figure 3.5: First steps in the layout of a CMOS inverter.

11) :paint pdiffc

12) Draw a box 4λ high x4λ wide at the leftmost at edge of the n-diffusion.

13) :paint ndiffc

14) Draw a box 4λ high x 4λ wide at the rightmost at edge of the n-diffusion.

15) :paint ndiffc

16) Draw a box 2λ wide x 33λ high in the center (1 λ separation between diffusion
contacts & 1 λ above the n-diffusion).

17) :paint poly (be sure to use correct overhang)

18) Draw the following M1 connections (use the wiring tool in magic):

i) V dd − > p-diffusion; the M1 width should be 4λ.

ii) Gnd − > n-diffusion; the M1 width should be 4λ.

iii) Connect the Drains - use M1 with a width of 3λ.

The layout in the drawing palette should now be identical to the layout
shown in figure 3.6.

19) Make the n-substrate connections for the p-channel MOS transistor

i) Draw a 4λx4λ box on the leftmost side of the Vdd rail.

ii) :paint nnc

iii) Draw a 4λx4λ box on the rightmost side of the Vdd rail.

iv) :paint nnc
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Figure 3.6: Partially completed inverter with m1 connections.

20) Make the p-substrate connections for the n-channel MOS transistor

i) Draw a 4λx4λ box on the leftmost side of the Gnd rail.

ii) :paint ppc

iii) Draw a 4λx4λ box on the rightmost side of the Gnd rail.

iv) :paint ppc

21) Place labels:

i) Vdd - make a 4λx4λ box on first n-substrate contact.

ii) :lab Vdd cen

iii) Gnd - make a 4λx4λ box on first p-substrate contact.

iv) :lab Gnd cen

v) In - make a 0x0 box on poly

vi) :lab In t

vii) Out - make a 0x0 box on M1 (drain connections)

viii) :lab Out t

22) :drc check (final drc check)

23) :drc why

24) correct any design rule errors (if there are any) The layout in the drawing
palette should now be identical to the layout shown in figure 3.7.
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Figure 3.7: Completed inverter with substrate connections.

25) :save inverter

When a drc error occurs the layout editor will identify the error by placing
white dots at the offending spot as shown in figure 3.8. Design rule (drc)
errors are displayed interactively. DRC checking can be run by typing the
macro “y” instead of :drc why. Whenever :drc y is activated, magic will
either reply with “no errors found” or it will make a list of errors. The
error/rule number can be identified by checking the rules on the web page.
In order for the error to be identified using :drc y, the area where the error

Figure 3.8: Example: interactive design rule checker (drc) violations.

occurs must be inside the box. Otherwise, you will receive the message “no
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errors found” when no errors exist inside the box.

26) extract the inverter (from inside magic):

i) :exttospice format hspice

ii) :ext

iii) :exttospice

iv) exit magic

27) HSPICE simulation:

i) in your main hspice file, use .include “inverter.sp”.

ii) use the BSIM parameters provided.

By now, you are all probably experts in HSPICE. However, it is still possible
to make errors in HSPICE when you attempt to simulate extracted layouts.
Check that the model names are consistent. BSIM model names are CMOSN
and CMOSP, for the n-channel and p-channel transistors while the extractor
uses nfet and pfet. You must edit the net list of the inverter in order to change
the model names for each transistor in the netlist.

3.5.3 Layout of the NAND Gate

1) start magic.

2) Draw a box 8 λ high x 20 λ wide.

3) :paint pdiff

4) Draw a box, exactly 15λ below the first one, which is 8λ high x 20λ wide.

5) :paint ndiff.

6) Draw the Vdd rail:

i) Draw a box 4λ high and 20λ wide, exactly 4λ above the p-diffusion.

ii) :paint m1

7) Draw the ground rail:

i) Draw a box, 4λx20λ, exactly 4λ below the n-diffusion.

ii) :paint m1

The layout in the drawing palette should now be identical to the layout
shown in figure 3.9.

8) Draw a box, 8λx4λ at the leftmost edge of the p-diffusion.

9) :paint pdiffc
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Figure 3.9: Nand gate power rails & diffusion layers drawn.

10) Draw a box 8λx4λ at the rightmost edge of the p-diffusion.

11) :paint pdiffc

12) Draw a box 8λx4λ at the center of the p-diffusion, leaving 4λ between the
box and the existing p-diffusion contacts.

13) :paint pdiffc

14) Draw a box, 8λx4λ at the leftmost edge of the n-diffusion.

15) :paint ndiffc

16) Draw a box, 8λx4λ at the rightmost edge of the n-diffusion.

17) :paint ndiffc

The layout in the drawing palette should now be identical to the layout
shown in figure 3.10.

18) M1 connections (use the wiring too):

i) Vdd − > p-diffusion - m1, width 4λ, leftmost and rightmost sides.

ii) Gnd − > n-diffusion - m1, width 4λ, only on the leftmost side.

iii) Drains − > m1, width 4λ, is run between the middle p-diffusion contact
and the rightmost n-diffusion contact.

19) Draw the poly lines:

i) Draw a box, 2λ wide and 37λ on the left side of the center p-diffusion
contact (leave 1λ separation between the box and the p-diffusion con-
tacts; it should be 1λ above the ground rail).

ii) :paint poly
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Figure 3.10: Nand gate power rails & diffusion layers drawn.

iii) Draw a box, 2λ wide and 32λ on the right side of the center p-diffusion
contact (leave 1λ separation between the box and the p-diffusion con-
tacts; it should be 1λ above the ground rail).

iv) :paint poly

The layout in the drawing palette should now be identical to the layout
shown in figure 3.11.

Figure 3.11: Nand gate power rails & diffusion layers drawn.

20) Make the n-substrate connections for the p-channel MOS transistor:

i) Draw a 4λx4λ box on the leftmost side of the Vdd rail.
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ii) :paint nnc

iii) Draw a 4λx4λ box on the rightmost side of the Vdd rail.

iv) :paint nnc

v) Draw a 4λx4λ box on the middle of the Vdd rail, leaving 4λ between
n-substrate contacts.

vi) :paint nnc

21) Make the p-substrate connections for the n-channel MOS transistor

i) Draw a 4λx4λ box on the leftmost side of the Gnd rail.

ii) :paint ppc

iii) Draw a 4λx4λ box on the rightmost side of the Gnd rail.

iv) :paint ppc

v) Draw a 4λx4λ box on the middle of the Vdd rail, leaving 4λ between
p-substrate contacts.

vi) :paint ppc

22) Place labels:

i) Vdd - make a 4λx4λ box on first n-substrate contact.

ii) :lab Vdd cen

iii) Gnd - make a 4λx4λ box on first p-substrate contact.

iv) :lab Gnd cen

v) A - make a 0x0 box on poly.

vi) :lab A t

vii) B - make a 0x0 box on poly.

viii) :lab B t

ix) nand - make a 4λx4λ box on M1 (drain connections).

x) :lab nand cen

23) perform the final drc check.

The layout in the drawing palette should now be identical to the layout
shown in figure 3.12.

24) :save nand

25) extract the nand gate.

i) :exttospice format hspice

ii) :ext

iii) :exttospice

iv) exit magic
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Figure 3.12: Completed Nand gate.

26) HSPICE simulation:

i) in your main hspice file, use .include “nand.sp”

ii) use the BSIM parameters provided

3.5.4 Design a 4-input, CMOS nand gate

You will realize a 4-input nand gate by modifying the layout of your 2-input nand
gate. Don’t worry about geometries, leave the pdiff and ndiff sizes identical.

1) Start magic.

2) :load nand

3) use the copy command to expand the nand gate.

The layout in the drawing palette should now be identical to the layout
shown in figure 3.13.

4) Now, complete the alterations in order to realize the 4-input nand gate. The
layout in the drawing palette should now be identical to the layout shown in
figure 3.14.

5) Perform the drc check.

6) :save nand4

7) Extract the circuit.

8) Simulate it in hspice.

Congratulations !! By completing this lab you have now become a magician
(apprentice level) !!



3.5. LAB INSTRUCTIONS 39

Figure 3.13: Copied structure of 2-input nand gate.

Figure 3.14: Completed 4-input Nand gate.
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3.6 Problems

1) Find the gate, source and drain dimensions of the inverter in λ’s. What are
they in µm’s ?

2) Find the gate, source and drain dimensions of the 2 input Nand Gate in λ’s.
What are they in µm’s ?

3) Start magic. Load your inverter. Type :cif see CWN; what CIF layer is this
??

4) Find the gate, source and drain dimensions of the 4 input Nand Gate in λ’s.
What are they in µm’s ?

5) If you examine the gate dimensions of the 2 input nand gate what would you
assume for the ratio of µn

µp
is ?? Is this true for the inverter cell ?? Why/Why

not ??
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Chapter 4

Magic Part B

Lab Objectives:

§1. To learn disciplined, design procedures.

§2. To continue to learn how to layout cells for a cell library.

§3. To provide instruction and exercise in the synthesis of simple logic cells
from hand-crafted transistors.

§4. To gain experience in layout verification via SPICE simulation of extracted
layouts.

Pre Lab:

1. Read Chapter 2 of the textbook pp. 48-59.

2. Review Magic Tutorials #1, #2 & #3.

3. Read this lab carefully.

4. Have the schematics drawn and labeled in xfig (or equivalent drawing tool)
and READY at the START of your lab.

4.1 Background

Successful IC designers must possess the ability to design full custom logic cells
at the transistor level. Designers will often need to design customized circuits
despite having a cell library. Regardless of how complete a particular library
might it is impossible to anticipate every need. The geometry of a particular
design might require changes in the shape of a cell which is extensively reused.
This can often save a very large area. It is also possible that a design may require
a specific cell which is not available for general use; again the designer needs
to provide a custom circuit. When the device technology is scaled down to a
more advanced process with smaller minimum feature sizes the entire cell library
must be redesigned. This can often lead to significant layout changes since the
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more advanced technologies often allow additional layout features which will
dramatically change the basic cells. It is also possible that the designs of the
present library will no longer work in the new technology due to second-order
effects.

The basic storage elements, latches and flip-flops create the foundation of
sequential logic circuits. Digital systems often employ combinational logic for
operations and sequential logic for control. Sequential logic circuits are also
used in high-speed arithmetic functions. For example, registers must be used
to buffer a cascade of adders. Since adders are asynchronous, there is a risk
that the adder will operate on the data before it becomes available. Registers
synchronized with the clock and other events solve this problem. Registers are
composed of single-bit flip-flops and latches are composed of single-bit storage
elements.

In this lab you will be building and verifying simple storage elements, namely
latches and flip-flops. These circuits are important in any digital synthesis and
they also serve as useful starting points for students to aid in developing their
skills in layout. Later in the course we will discuss latches and flip-flops; it
helps to know something about them prior to the discussions. We will review
the basics, then start by designing latches based on pass transistor logic. We
will construct master-slave flip-flops which use these latches as building blocks.
All of the circuits will need to be verified at the circuit level, in Spice.

4.2 Latches & Flip-Flops

A single-bit latch is the most fundamental storage element used in logic design.
The simplest controllers depend upon some sequential operation. A latch offers
the ability to synchronize a given state change with other related events. In
addition, a logic state can be “held” for an indefinite period; hence the latch
provides storage. In contrast to the single-bit latch, standard logic gates are
memoryless, meaning that the logic equation does not consider past logic states.
In general a latch can be synchronous, if its states change with the system clock
or it can be asynchronous if its states change independent of the system clock.

1V V2

Figure 4.1: A static latch synthesized from two inverters can hold the voltage
levels V1 and V2.
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All static latches are synthesized with a pair of logic gates connected in
a loop. The value of the inverter outputs will not change (unless power is
removed); hence the term static latch. The simplest example of a static latch is
composed of a pair of inverters as shown in figure 4.1. You will remember from
the SpiceB lab, when ring oscillators were discussed, that a loop formed by an
even number of inverters is stable in two states; e.g. bistable. For example, once
the voltage, V1, in figure 4.1 rises above or below the inverter logic threshold
the output state, V2 will be determined. If V1 remains unchanged, as shown
in the figure, then V2 will actually force V1 to remain at its original value due
to the regenerative property of inverters connected in this manner. In order to
make a practical latch control for writing and holding data in the latch must be
supplied. This will be the main topic of this section.

Q

Q

Q

Q

R

S

D R

S

C

Figure 4.2: Simple RS latch, clocked RS latch and clocked D-latch examples.

The most common first example of a latch shown to students is the R-S
Latch (sometimes called the R-S Flip-Flop). The R-S latch can be realized with
NAND gates or NOR gates. A version of this latch using NOR gates is shown in
the upper half of figure 4.2. This approach to latch synthesis is selected because
the fundamental units available to students in a first logic design course are
typically AND, OR and XOR gates (or their inverted forms). The R-S latch is
asynchronous; however, it can easily be modified to a synchronous version by
incorporating additional logic gates. A version of the clocked R-S latch shown
in the lower half of figure 4.2. The R-S latch is not often used. The undefined
state when R and S are equal to a logic “1” presents some problems. These
problems can be overcome by forcing the R and S inputs to always be inverted
versions of each other. This is commonly known as the D-latch. The D-latch
can be synthesized directly from the R-S latch; this is shown in the lower half
of figure 4.2 by connecting the inverter between the “R” & the “S” inputs.

There are in fact many implementation options available for one to synthesize
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a D-latch. One can use a combination of NOR gates, AND gates and inverters
as shown in figure 4.2. It is also possible to synthesize a latch by opening and
closing the feedback loop in the static latch. For example, if we were to add
a switch to open and close the loop in figure 4.1 we would have the option of
changing the value of the bit stored. A common way to introduce this feature
is to add a 2:1 multiplexer (MUX). There are two possible options: positive
or negative phasing. The mux select to write can be a logic “1”, which would
indicate a positive phased latch or it could be a logic “0” which would indicate
a negative phased latch. Both examples are shown in figure 4.3. The positive
phased latch is written when the “W” line is high and the bit is stored when
the “W” line is low. The negative latch uses a complementary write level; in
other words data is written when the “W” line is held low and stored when the
“W” line is high. It is easily seen that when the “W” line is “active”, meaning
that the latch is being written, that the bit at Vin is immediately seen at the
Q and Q̄ outputs. In other words, the latch is said to be transparent when the
“W” line is active. This property is shared by all latches.

QVin

WE/L

Q

1

0

QVin

Q

WE/L

1

0

Figure 4.3: Simple RS latch, clocked RS latch and clocked D-latch examples.

Flip-Flops differ from latches in two principal features. First, flip-flops are
edge-sensitive while latches are level-sensitive. Data is typically written on dur-
ing the rising edge of the clock. While the data is being written the output is
held during the rising edge of the clock. The output of the flip-flop will change
during the falling edge (please note that data can be written on the falling edge
which would mean that the data at the output would only change on the rising
edge of the clock). This brings us to the second difference between flip-flops and
latches; flip-flops are not transparent. This means that the input bit is not seen
at the output when data is written to the flip-flop. There is also a difference in
the clocked delay since a latch has a minimum delay of T

2 while the flip-flop has
a minimum delay of a full clock period.

There are several ways to introduce edge triggering. Some gates and a pair
of inverters can be used as shown in figure 4.4. There are many problems which
make this type of flip-flop impractical for IC design. The master-slave flip-flop
is the approach that is most frequently in IC design. A master-slave flip-flop is
realized by cascading opposite phased latches which use a common clock signal.
A common choice is to cascade a positive latch with a negative latch. There are
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Q

Q

D

C

Figure 4.4: D flip-flop using inverters for edge-triggering.

two examples illustrated in figure 4.5. The first version combines the clocked D
latches described earlier. The opposite clock phasing is realized by inverting the
clock signal. The second version uses the muxed latch implementations. The
positive latch is realized by using a multiplexer which writes when the clock is
high and the negative latch is realized using an inverted version of the MUX.

Q

Q

D

C

Vin

Q

0

1

0

1

Q

Clock

Positive−Phased Latch Negative−Phased Latch

Figure 4.5: Two versions of master-slave D flip-flops.

All of the above are static D Flip-Flops. D flip-flops are the most common
versions used in integrated circuit design. The JK Flip-Flop is used in some
control applications. The JK flip-flop is similar to the R-S flip-flop; however,
the input state “J=1, K=1” is defined (as opposed to being undefined in the
R-S flip-flop). A T Flip-Flop can be realized from a J-K flip-flop if “J=K=1”.
This means that the flip-flop will toggle in when “J” and “K” are both set to
the logic level “1”. All versions of flip-flops can be realized from each other;
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e.g. a D flip-flop, with the addition of some logic gates, can function as a J-K
flip-flop.

4.3 Static Latches Implemented with Pass Tran-

sistor Logic

We will be synthesizing multiplexed latches described in figure 4.3. The multi-
plexer can be implemented with pass transistors or transmission gates. This is
typically chosen over a CMOS implementation due to the number of transistors
required to realize a CMOS multiplexer (approximately 10). Only two transis-
tors are required if n-channel and p-channel devices are used to implement the
switches. This is illustrated in figure 4.6. Practical latches should use an addi-
tional inverter to obtain the Q output. Since the voltage levels will not reach
the supply rails it is safer not to use the inverter tied to the pass transistor to
drive any other logic elements. The logic state can actually be changed by the
load if a designer is not careful. Please note that the reason for the dashed lines
is to indicate that we will not add the additional inverter for this lab since our
ultimate goal is to use these to synthesize flip-flops.

Vin

Q

WE/L

Q

Vin

Q

WE/L

Q

Figure 4.6: A complimentary pair of static latches using pass transistor logic.

Resets can also be added to these latch structures. A common addition to
the latch is an active high or active low reset. This can easily be incorporated
by replacing one of the latch inverters with a nor gate or a nand gate as shown
in figure 4.7. The reset works by placing the latch in a state where the output
will be fixed to a value regardless of what is stored on the latch; typically this
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is a logic low.

1VV2 R V21V R

Figure 4.7: Re-settable latch with a nand and a nor gate.

We will now discuss how to realize master-slave D flip-flops from the latches
we have synthesized.

4.4 Pass Transistor Implementations of Static
D-Flip-Flops & T-Flip-Flops

The version of the master-slave static D flip-flop using multiplexers described
earlier in figure 4.5 can be directly implemented by cascading the complimentary
latches described in the previous section and depicted in figure 4.6. The resulting
flip-flop is shown in figure 4.8. It is also worth noting that this version of the
D-Flip-Flop can be used to implement the T-Flip-Flop by connecting the Q̄
output to the “D” input shown by the dashed-line in figure 4.8. In the “T”
flip-flop configuration the clock input is renamed to the “T” input and the “D”
input is no longer required.

Q

Q

D

Clk/T

Figure 4.8: A T/D-Flip-Flop synthesized from two complimentary latches.
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The resets described in figure 4.7 are implemented using a NAND gate in
the master flip-flop. This is illustrated in figure 4.9. The flip-flop will not be
reset for 1

2 clock period after the reset changes from high to low since the reset
state is not immediately applied to the second latch. If an immediate reset is
needed, then an additional nand gate can be included in the second latch in
figure 4.9. This will provide a low at the Q output and the contents will be
immediately erased. The dashed line indicates how this could be converted to
a T-Flip-Flop.

Q

Q

D

R

Clk/T

Figure 4.9: T/D-Flip-Flop with reset.

The T-Flip-Flop with a T input enable can be synthesized from an XOR
gate and a D-Flip-Flop as shown in figure 4.10. The Q output and the T input
are XOR ’ed together. When T is high the flip-flop will toggle and when T is
low, the output will not toggle.

R Q

R

D

Clk

QT/EN Q

Clk

Figure 4.10: A second version of a T-Flip-Flop synthesized from an XOR gate
and a D-Flip-Flop.
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4.5 Cell Design Procedures

You will be designing D and T flip-flops for this lab. The flip-flop, unlike the
simple gates you have been synthesizing, will require a methodical approach.
This is necessary in order to realize the logic element with an efficient layout
and to verify the layout netlist in Spice.

1) Create a high-level description of the cell.

a) Logic/Gate level description.

b) Output waveform as a function of the input waveform(s) and control
signals.

2) Draw the schematic.

a) Draw the transistor-level schematic from the gate-level description.

b) Verify that the schematic realizes the correct logic function.

c) Select appropriate W
L ’s for each individual gate. Assume µn = 2µp.

d) Label the schematic.

i) Label the input(s), output(s) and control signals.

ii) Label other nodes in the net list which are needed for testing (these
can be removed once the testing is complete.

3) Layout the cell.

a) Create the sub-cells first. For example, the flip-flops can be synthesized
from complimentary latches. Draw these first.

b) Place subcells. Make sure that the labels in the layout match the labels
from the schematic.

4) Verify the layout.

a) The layout must pass DRC checking.

b) Visually check the connections in magic using the select tool.

c) extract the layout netlist.

d) Simulate the in Spice.

e) Compare the results to the expected output waveform vs. input wave-
form.

4.6 Summary

Common approaches to implementing latches and flip-flops have been discussed.
These are part of the primitive cell library; all must be verified using a circuit
simulator which in our case will be Spice. We have selected multiplexer based
latches which use simple pass transistors to realize the switching operations
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needed to write and hold data. While these circuits are work well in the 1.2
µm process, they are not without problems in more current technologies. First,
single pass transistors, especially the p-channel transistors can cause some prob-
lems as features sizes become smaller. It is possible to have an overlap in time
where both devices actually will conduct if the rise time of the control signals
(e.g. write, clock) are not sharp enough. Remember that MOS transistors will
conduct even when the switch voltage is below the threshold value. The solution
for problems like this is to move to a two-phase, non-overlapping clock. This
will prevent both switches from potentially conducting at the same time. The
next problem issue is driving large loads. The need for an additional inverter
to provide the Q output in figure 4.7 has been discussed earlier (please realize
this also holds for the flip-flops we will build). Designers need to guarantee that
the latch and flip-flop will work for large fan outs. This can be accomplished by
providing the correct load at the Q̄ output in figure 4.7 and the Q outputs in
figures 4.8-4.10 in a Spice simulation. It is possible that the static latches and
flip-flops we are building could have the stored value changed. The solution is to
add additional inverters or to buffer the output. A third problem results from
the fact that we are using pass transistors. This will affect voltage levels at the
input to the inverter fed by the pass transistors. One potential problem is static
power consumption if the circuit is to be used for low power. Switching the pass
transistors to transmission gates is a good start to solving such problems. The
main thing to remember is that although the pass transistors are much more
area-efficient, this is not a CMOS circuit !! So you need to be careful when
voltage levels and power consumption are important. This again underscores
the reason why a circuit simulator is used rather than a digital simulator. One
other useful test is to simulate a delay line using multiple flip-flops; be sure to
test for storing a logic “1” since the logic “0” provides a less useful result.

4.7 Pre-Lab

In order for people to move quickly through this lab we will start with a general
structure which can be used to synthesize complimentary latches and the xor
gate. You should create in magic and save PRIOR to your lab meeting. This
will be checked at the beginning of the lab. This is shown in figure 4.12.

The cell in figure 4.12 is 40λ high and 44λ wide. The separation between
the Vdd and Gnd power rails is 32λ. This will provide the “footprint” of the xor
gate. In order to obtain a working “footprint” of the latch cells you will need to
work on routing. A particular routing problem occurs with the clocks and some
of the intermediate signals. People often will not see how to efficiently handle
the routing of signals, clock lines, etc. quickly. In order to help with this it is
worthwhile to mention that you will also need 3 buses when you are designing
the latches (these are not needed for the xor gate). The actual “footprint” for
the latch cells (with the exception of the resettable latch) is shown in figure 4.12.
The size of the previous cell will be increased in height from 40λ to 61λ. This
assumes 4λ wide buses with 3λ separation.
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Figure 4.11: Your base cell.

Think about how you will need to make the connections in order to realize
each of the latches. It is also important for you to devote some time to thinking
about how to modify the baseCell.mag in order to incorporate the nand gate at
the output.

1) Sketch the input, output and control waveforms before lab.

2) Prepare the magic layout figure 4.11.

3) You should have the connections for each latch figured out prior to your lab.

4) You also should have a layout solution to allow for replacing the inverter
with the nand gate; to add the reset.

4.8 Lab Instructions

This lab will take two weeks.
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Figure 4.12: Your base cell with busses added.

4.8.1 Week 1

1) Design and layout the complimentary latches shown in figure 4.6 (make this
a flat layout). You will use the baseCell.mag which should be prepared prior
to the lab. Remember to rename the baseCell.mag each time you use it.
Extract the layout and verify the design with Spice.

2) Modify the baseCell.mag to accommodate a nand gate at the output; save
it as baseCell2.mag first.

3) Modify the positive phased-latch to incorporate the reset using the NAND
gate described in figure 4.7 (right hand side). Be sure that you save the
previous version of the latch because you will need it to get full credit for
this lab. Extract the layout and verify the design with Spice.



54 CHAPTER 4. MAGIC PART B

4) Design and layout the xor gate described in figure 4.10. Extract the layout
and verify the design with Spice.

5) Modify the complimentary latches to make them more area efficient. Re-
verify the layouts in Spice. Remember to save your previous work so it is all
available. This is not only important for your grade; it will also keep you
from going insane in the event the modified version does not work.

6) Reduce the area for the xor gate. Verify in Spice.

4.8.2 Week 2

4.8.3 Week 2 Pre-Lab

1) You should continue to work on shrinking the size of your latch designs; you
should also be certain that the latches you will use to construct the flip-flops
have been thoroughly verified via Spice simulation PRIOR to the second lab.

2) Sketch the timing for each of the flip-flops you will build. Be sure to use
your timing sketch in the verification and provide it in your lab report.

4.8.4 Week 2 Lab

1) Design the D-Flip-Flop in figure 4.9(make this a flat layout). Extract the
layout and verify the design with Spice.

2) Modify the design the D-Flip-Flop to create a T-Flip-Flop as shown in fig-
ure 4.9. Include the D-Flip-Flop as a subcell. Extract the layout and verify
the design with Spice.

3) Design the T-Flip-Flop in figure 4.10 using the D-Flip-Flop you designed in
part 1. Include the D-Flip-Flop as a subcell. Extract the layout and verify
the design with Spice.

4.9 Reporting

1) Tar zip all magic files, *.ext files and Spice files into a file named: MagicBY ourName.tar.gz.

2) Copy this file to public directory listed on the web page for this lab.

3) Submit the hand drawn schematics; the label names in the schematics should
match the label names at appropriate points in the layout and the simulation
net lists.

4) Printout the layouts and simulation/verification results for each circuit de-
signed.



Chapter 5

Magic Part C

Lab Objectives:

§1. To provide instruction in hierarchical design.

§2. To learn about layout with subcells and subcell wiring techniques.

§3. To provide training on the use of multiple windows and cell hierarchys in
magic.

§4. Introduction to irsim, the digital simulator.

Pre Lab:

1. Review Magic Tutorials #4 & #5.

2. Read the demo on irsim and the manual provided on the ELE 447 web
page.

3. Attempt to extract some of your earlier cells, namely the and gate and the
T-Flip-Flops; use ext2sim and simulate them in irsim prior to attending
this lab. Follow the examples in the lab write-up.

4. Read this lab carefully; Have the schematics drawn in xfig and READY
at the START of your lab.

5.1 Background

The most practical method of designing analog or digital ICs is to synthesize
complex systems from library of common, reusable primitive circuits. The prim-
itive circuits form a cell library which is common to many projects. This implies
a hierarchy of at least two levels: one at the top level where cells are used as
building blocks and one at the cell library level. A given library cell might be
used many times in a design; by restricting the designer’s access to “read-only”,
problems can also be divided into groups at either the top level or at the prim-
itive cell level. This dramatically simplifies both the design and verification of

55
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ICs with large numbers of transistors. Most CAD systems and layout editors
will provide hierarchical sub-division of circuits and sub-circuits. In magic hi-
erarchical cells are implemented through the use of a sub-cell. Sub-cells can
be read using the magic command “:getcell”. In magic the hierarchy can be
expanded indefinitely thus accommodating as many levels as needed for a given
project.

Larger, more complex ICs to be broken down into smaller sub-circuits which
require fewer steps to verify. Good designers will always employ many hierarchi-
cal levels to simplify testing and debugging. The hierarchy in magic should be
ALWAYS be used; cells should NEVER be copied from the cell library, directly
loaded into a layout where it can be modified (perhaps an unintended result).
If a very large and complex system is constructed in a flat layout, meaning that
the entire design is kept on a single level, then one cannot guarantee that two
of the same simple cells will yield the same performance.

More than one drawing palette is often required when you are using the
layout editor to handle more than one type of cell. This situation occurs so
frequently that most layout editors will also provide designers with multiple
palettes. This feature is referred to as multiple windows in the magic layout
editor.

Digital simulation is an important tool for the verification of complex digital
circuits. The synthesis of large digital systems becomes UN-wielding for a circuit
simulator like SPICE or HSPICE. The time it takes to simulate increases; small
problems can turn into big ones due to extraction errors. This is acceptable
for small circuits with few transistors; however, when the number of transistors
grows and the function is purely digital (meaning that the only 2 states on any
given clock are a logic high or a logic low, e.g. VDD and Ground) then a digital
simulator is the only practical option.

The digital simulator in our CAD suite is known as irsim. Irsim was de-
veloped in the late 1980s by two researchers in RISC machines at Stanford
University, Arturo Salz and Professor Mark Horowitz[1]. Professor Horowitz is
now the director of the Computer Systems Laboratory at Stanford University.
Irsim was a descendant of research and previous switch-level simulators devel-
oped during that period[2, 3]. Several improvements were made to irsim and
revisions to the software were made through the 1990s. Irsim is public domain
software and it is often used in conjunction with the magic layout editor.

In this lab you will be synthesizing a ripple counter and a carry-save counter
using the T Flip-Flop cells developed in the previous lab as well as simple gates
from the first magic lab. These circuits will be verified with irsim.

5.2 Binary Counters

Counters are one of the most common circuits in digital systems. Applications
of counters include controllers, program counters, frequency dividers and state
machines. Counters are synthesized from T flip-flops. When you first learned
about counters they were probably implemented using J-K flip-flops with the



5.2. BINARY COUNTERS 57

J-input and K-input both connected to Vdd. A J-K flip-flop connected in this
manner is also a T flip-flop.

A counter is a special case of a state machine. A state machine is a se-
quential logic circuit which executes an algorithm. The algorithm is completed
by stepping through a finite number of steps (or states). Each state is stored
in a memory, typically, a flip-flop. Thus, a 2-bit counter is a state machine
which uses 2 memory elements. Minimally, an implementation of a state ma-
chine requires state memory for its present state and logic to find the next state.
The present states and next states for a simple 2-bit counter are illustrated in
Table 5.1.

Present State Next State
00 01
01 10
10 11
11 00

Table 5.1: State Table for A Simple Counter.

Generally, state machines, even counters, can be a great deal more compli-
cated than the simple 2-bit counter. In this example, the next state is totally
determined from the present state. General state machines can also use inputs
in addition to state memory in finding the next state. Although the simple
counter runs through all of its states, a general state machine need not use all
of its states each time it runs. The general state machine is illustrated in fig-
ure 5.1[4]. The dashed lines are part of the general state machine which are not
used for the simple counter counter example.

Next State
Logic State Memory

Output
Logic

Inputs
Outputs

Clock Reset

Figure 5.1: General description of a state machine.

Counters can be static or dynamic. If a counter is synthesized with dynamic
flip-flops, then it will be referred to as a dynamic counter. If a counter is
synthesized with static flip-flops then it is referred to as a static counter. Static
flip-flops will always have a low resistance connection to either VDD or ground
for a given logic state while dynamic counters rely on the parasitic capacitance
at nodes within the circuit to store charge to maintain a logic level. Because
charge will eventually leak, the selection of static or dynamic counters depends
mainly on the speed needed. For example, a dynamic counter might be a poor
choice if it used as a machine controller or as a timer circuit in a wristwatch
since these circuits will require maintaining a count or state for 10 mSec or even
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longer. Static counters are used exclusively for such applications. On the other
hand, if you are building a circuit which is expected to run at high speeds then
a dynamic counter might be a better choice. However, you must include the
testing performed (during the prototype phase and production) to be certain
that low counter speeds are not required. Otherwise, some tests may fail.

We will be looking at specific asynchronous and synchronous static, binary
counters in the sections which follow.

5.2.1 Asynchronous Ripple Counter

A ripple-counter is synthesized from T flip-flops by connecting the Q-output
of the preceding flip-flop to the T input of the next flip-flop. The T-input of
the first flip-flop is connected to the clock. The 4-bit ripple counter is shown
in figure 5.2 using a T flip-flop. A reset for the counter is also provided by
connecting all of the T flip-flop resets globally.
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Reset

Clk

Figure 5.2: Asynchronous, ripple counter.

The ripple counter is asynchronous, meaning that the value of each bit used
to count will not change state at the same instant following the clock transition.
Information from the least significant bit will be carried to the next significant
bit and this is repeated until the information reaches the most significant bit;
information is rippled from LSB to MSB hence the name ripple counter.

The first flip-flop in figure 5.2 will toggle on every clock period. The second
flip-flop will change state on every second clock period. The third flip-flop will
change on every fourth clock period. This continues by powers of 2. Because the
first flip-flop toggles once per clock period the maximum speed of the counter
is limited to the maximum speed of the first flip-flop.

The ripple counter can be used to divide the frequency of the clock in powers
of 2 since the output of the nth bit will be a square wave with a period 2nth

times longer that the clock period. Thus, one application of the ripple counter
is frequency division.
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5.2.2 Synchronous Serial-Carry Counter

In a synchronous counter the state transitions take place on each clock cycle.
This means that each T flip-flop must have a direct clock connection. One
could construct a simple synchronous counter from T flip-flops with enables.
The output of the preceding stage is connected to the enable of the succeeding
stage. The T input is connected to the clock signal for each T flip-flop. The
speed of this counter is limited by the time it takes for the LSB to serially reach
the MSB. This problem can be resolved to some degree by “anding” ALL of the
previous outputs to create the enable signal at each succeeding stage. The price
will be the multiple input AND gates.
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Figure 5.3: A synchronous, serial-carry counter.

The 4-bit serial-carry counter shown in figure 5.3 synchronizes the state
transitions with the clock with clocked T flip-flops. Two-input AND gates
combine the output of the preceding stage with the output of the present stage.
This counter only requires an additional AND gate for all but the first and final
stage.

The serial-carry counter in figure 5.3 ANDs the output of a flip-flop with its
input to form a carry-out logic signal. With the exception of the first flip-flop,
this is repeated for each binary digit. The speed limitation is the transition of
the count which changes the logic state of all AND gates. The ripple counter is
actual faster for the same given circuit technology.

5.3 Sub-cells, Multiple Windows in Magic & ir-

sim

The layout of systems with sub-cells requires proficiency with the rules magic
employs for hierarchical design. The use of multiple windows and changing the
edit window is also important. Finally, efficient use of irsim is needed to verify
larger, digital designs.

The following parts of this section provide exercises aimed at helping you
to become familiar with sub-cells, multiple windows (both in magic) and irsim.
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This is provided for you to do OUTSIDE of the lab.
You are expected to have read tutorials #5 and #6 as well as the irsim

documentation. You should have the AND gate layout and irsim simulation
complete at the start of this lab. You should also have the irsim simulation of
both T flip-flops completed. All of these tasks should be completed by your
scheduled lab time and day. You will be expected to know these parts of magic
and irsim.

5.3.1 The AND gate

The AND gate is synthesized from the NAND gate and the inverter. Since we
have created a NAND gate and an inverter in Magic Part A, you will use those
sub-cells for this exercise.

Open magic without selecting a file. Use the following magic commands:

:getcell nand_12

:getcell inv_12

to load the nand and inverter as sub-cells.
Select the cell, then use the ”x” macro to view the contents of the cell. Use

the ”X” macro (e.g. ”shift-x”) to remove the contents of the cell from view.
You are allowed to move the cell, but, the level that you are operating on does
not permit direct modification of the nand or the inverter cells.

Open a window with the inverter, place the cursor in this window. Make
this window the edit window using the following magic commands:

:op inverter,

use the "s" macro with the cursor in the inverter window

:edit

Notice that you will need to stretch the inverter in order to make the power
rails compatible with the NAND gate. Stretch the inverter using the ”s” macro
and the ”shift-w,e” macros. Once the rails are identical in height, save the
inverter cell.

It is desirable to overlap the diffusion contacts of the NAND gate and the
inverter. Doing this directly will cause a drc error because the diffusion contacts
are different sizes. Thus, we will need to re-size the diffusion contacts on the
NAND gate. Use the following magic commands to accomplish this task:

:op nand

use the the "s" macro with the cursor in the nand window

:edit

The NAND gate should now be in the edit window. Modify the n-diffusion
contacts in your nand gate. Make them the same size as the inverter cell n-
diffusion contacts. Once you have done this, make sure there are no drc errors.
Save the nand gate once this task is complete.
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Now we are ready to work on the AND gate level. Place the cursor in the
window with the nand and inv sub-cells. Make it the edit window using ”s”
macro, and the :edit command. You should now be editing the in the original
window. Here, we will overlay the diffusion contacts of the nand and the inverter
in order to minimize the area of the nand gate. Notice, however, that the nand
gate must be ”flipped”. Select the nand cell. Use the ”x” macro. Use the
following magic commands:

:sideways

View the NAND gate using the ”x” macro. Move the cells together, over-
lapping the diffusion.

You will now need to connect the output of the nand to the input of the
inverter. Using the wiring tool, extend m1 from the nand output to just before
the inverter input. Since the inverter input is poly, you will need a poly contact
(overlap the poly by 1 λ when placing the poly contact to avoid a drc error).

Now, we have the and gate in a hierarchical design. The problem is that with
such a simple gate, we do not want it to be hierarchical. To save a hierarchical
cell as a flat file (flat meaning a single cell instead of a cell composed of sub-cells),
use the command:

:flatten and_12

This will save the contents of this cell in the file

"and_12.mag"

.
Open the AND gate cell using:

:op and_12

the "s" macro

:edit

Erase the nand and the In, and Out labels. Replace the inverter output
label with the ”and” label. Now save the AND gate as:

and_12.mag

Make sure it is free of drc errors.
Use :ext to extract the and gate.
Verification will be carried out using irsim. You must convert magic’s ext

file to a file readable by irsim. From inside magic, type:

$\%$ :exttosim format SU

$\%$ :ext

$\%$ :exttosim and_12

$\%$ :exit
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This will create new files with several extensions. One file will have a “.sim”
file extension. Irsim uses a command file for simulation instructions. Copy the
command file provided for the AND gate. The name of the command file is:

‘‘and_12.cmd’’

Now, you can run irsim. At the prompt use:

[\%]> irsim -s scmos100.prm and_12.sim -and_12.cmd

Review the result on the screen. Does the simulation appear to be correct
for the AND gate ??

Sub-cells can also be selected from within the edit window. Return to the
early steps where the NAND gate and the inverter cells are both opened as
sub-cells; select each cell and make it the edit cell using a single window.

5.3.2 T-Flip-Flop

Simulate each of the T flip-flops designed in the previous lab. You will need to
open each flip-flop in magic and then use the :ext command to extract each cell.
You will again use ext2sim create the simulation files for each T-Flip-Flop.

You will need to copy the irsim command files: “tff1.cmd” and “tff2.cmd”
supplied on the web page for this lab. To simulate the T flip-flops, at the prompt
type:

$[\%]> irsim -s scmos100.prm tffx_12.sim -tffx_12.cmd$

Review the result on the screen.

5.4 Top Down Design Procedures

In this lab you will be designing two types of counters. In each case the counter
will be designed using sub-cells. Although the counter is a fairly simple logic
circuit, it will serve to illustrate the methods one should use for larger systems.
In larger systems we tend to design from the “top down”. In contrast, when we
designed the flip-flops, which is true of all cell design, we employed more of a
“bottoms up” approach. Thus, for a project which would include the design of
some or all of the sub-cells as well as the final product, two different activities
would take place.

Verification only makes sense if there is something to verify the cell or the
subsystem or the entire design (and later the layout) against. This is generally
true for the design of large systems and individual cells though the methods
are somewhat inverses of each other. There is one fundamental relationship
which will be identical for both cell design and high-level system design: You
should have some expectation of how the circuit will function when it is working
correctly LONG BEFORE starting the layout. In other words, you should
know the basic timing waveforms and how the circuit will function; at least
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at the “behavioral level”. If you don’t know this then how will you interpret
the simulation results for an extracted cell ?? This sounds very simple; so
simple that it should be automatically understood. However, there are countless
examples which can be cited where this basic rule is violated and the system
becomes nearly impossible to debug. When this happens, much of the work
must be re-done.

One goal of this lab is to drive students in the direction where they WILL
NOT START a layout without first developing an understanding of the detailed
operation of the circuits they are attempting to build.

1) Create a high-level description of the system.

2) Divide the entire system into major subsystems.

a) Simulate the entire system.

b) Simulate the sub-systems and back-annotate results into the full system.

3) Generate a high-level logic design (Schematic, logic block or VHDL).

a) Inventory the unique cells required.

b) Update and/or create the new cells (if any are required).

4) For Each Subsystem.

a) Decide on a hierarchy (1 level, 2 level, etc.).

b) Prepare a detailed verification for each hierarchical level.

c) Place Cells, adjust, overlap, flip , etc. before committing to wiring.

d) Complete wiring.

e) Place Labels.

f) Fix drc violations.

g) Verification.

i) extract layout.

ii) convert extracted files to irsim format (ext2sim).

iii) simulate in irsim.
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iv) compare simulation result to part (b)’s prediction.

5) Assemble subsystems.

i) Label the input(s), output(s) and control signals.

ii) Label other nodes needed for testing.

6) Layout the cell.

a) Create the sub-cells first. For example, the flip-flops can be synthesized
from complimentary latches. Draw these first.

b) Place sub-cells. Make sure that the labels in the layout match the labels
from the schematic.

7) Verify the layout.

a) The layout must pass DRC checking.

b) Visually check the connections in magic using the select tool.

c) extract the layout netlist.

d) Simulate the in HSpice.

e) Compare the results to the expected output waveform vs. input wave-
form.

5.5 Lab Instructions

1) Design the 4-bit ripple counter shown in figure 5.2 using the resettable T
flip-flop from the previous lab. Perform the layout using the magic array
command (described in Tutorial #4). Extract it and use ext2sim to create
the irsim files. The irsim command file:

‘‘rCounter_12.cmd’’

can be copied from the web page for this lab.

2) Design the 4-bit synchronous counter shown in figure 5.3 using the T flip-
flop with the T enable from the previous lab. Extract it and use ext2sim to
create the irsim files. The irsim command file:

‘‘scCounter_12.cmd’’

can be copied from the web page for this lab.
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5.6 Problems

1) A true enable should halt the counter without resetting it. This means that
when the “En” input transitions from high to low the count is held indepen-
dent of the clock. When the “En” input transitions back to high the counter
should resume counting from the count it held. Does the enable on the serial
carry counter meet this specification ?

2) How could the irsim script:

‘‘scCounter_12.cmd’’,

be modified in order to investigate this problem ?

3) What modifications, if any, are required to make the enable function accord-
ing to the specification provided in problem (1) ? (your answer should be
based upon the result provided in the previous problem).

5.7 Pre-Lab/Reporting

1) Have the irsim simulation of the AND and both T flip-flops completed.

2) Have the block diagrams drawn and labeled for the layout.

3) Sketch the input, output and control waveforms before lab.

4) Tar zip all magic files, *.ext files and irsim files into a file named:
MagicCY ourName.tar.gz.

5) Copy this file to the public directory listed on the web page for this lab.
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Chapter 6

Magic Part D

Lab Objectives:

§1. To provide instruction on pad frames and how this is handled in magic.

§2. To provide instruction on the use of input and output pad buffers.

§3. To learn about wiring pad frames and verification at the pad frame level.

§4. Introduction to irsim, the digital simulator.

§5. To create cif files correctly.

Pre Lab:

1. Read this lab carefully.

2. Look at frame12, bufferx8 and bufferx3 prior to the lab.

6.1 Background

Communication paths between the circuit board and the integrated circuit (IC)
for input/output (I/O) signals must be considered in order to make use of mono-
lithic circuits. For example, if you fabricate the counter built in the previous
lab then you would need to establish I/O connections between the labeled areas
in the layout to a power supply, a clock and a logic analyzer in order to verify
operation of the circuit in Silicon. It is common practice to place the die con-
taining the circuit (e.g. the IC) in a hermetically sealed package. The pins or
leads are often wire-bonded to the die. An alternative to this approach would be
to wire bond from a circuit board to the bare die. MOSIS supplies a standard
40 pin DIP package with a cover which can be lifted in order to inspect the die.
This package is obviously intended for prototype circuits.

The electrical connections to the die are NEVER made directly to the circuit
itself. The wires from the package are simply too large. There is a pad frame
which provides a larger conductive contact for each electrical connection. There
are many pad frames in our library. You will be using a pad frame which supplies
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40 pads which wrap around the 2.2mm x 2.2mm pad frame. This is compatible
with the 40 pin DIP supplied by MOSIS. Pad dimensions are on the order of
100-200 µm for each dimension in order to provide enough area to attach a wire.
Pads are often square.

Additional components designed specifically for I/O must be included for
reliable operation. The gates in MOS devices are not able to cope with a great
deal of charge. For example, the static electricity build up which shocks you
from time to time is enough to puncture the oxide causing permanent damage
to the IC. Clocked signals should be buffered to guarantee correct interpretation
of the logic level.

In this lab you will learn how to make connections to the pad frame from
our cell library. This is a final step in any IC design project. You will also learn
how to create a CIF file which contains the exact masks used in fabricating the
IC.

6.2 Pad Frames & Protective Diodes

The collection of pads and protective diodes is referred to as a pad frame.
There are several pad frames in the cell library. The one we are interested in is
frame12.mag. It can be accessed using the load command (inside magic):

:load frame12
Open magic and load the pad frame. Select the pad frame by placing the

mouse in the middle and using the “s” macro. Then use the “x” macro to expand
the pad frame. You will notice additional circuitry (sub-circuits) between the
pads in the pad frame layout. These are protective diodes. If you do not notice
the diodes, zoom into an area just larger than one of the pads. Use the “X”
macro (to unexpand subcells) and repeat the “x” macro. You will see the diodes.
If you use the “cntrl-x” macro you will also see the name of the cell containing
the diode.

The diodes protect the circuit by absorbing current from any voltage greater
than Vdd (+5 Volts, in our case) or less than Gnd. Figure 6.1 shows how the
diode connection is made.

Signal

Gnd

Pad

Vdd

Figure 6.1: Diode protection at the pad.

The pad frame contains 40 pads. Each pad will provide a connection to a
pin on the 40 PIN DIP package. The pad frame, frame12, is shown in figure 6.2
below. Notice that there are 2 strips of metal1 which surround the inner pad
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frame. The inner strip is the Gnd rail and the outer strip is the Vdd rail. The
Vdd rail is connected to the pads in the upper right and lower left corners. The
Gnd rail is connected to the both pads in opposite corners. The Vdd and Gnd
rails provide power for the diodes and buffers.

Figure 6.2: The pad frame: frame12.

The pads in the pad frame contain metal1, metal2, via and overglass. There
is a glass layer which covers the entire die. The glass above the pads is cut away
in order to allow for an electrical contact between the wire and each pad. Thus,
the overglass layer is intended to cut an opening in the glass where it is drawn.
There is a layer in magic named pad. The dimensions of the pad layer are given
in µm and they do not scale. The relationship between the pad location in the
frame to the pin location on the package is given in Figure 6.3.

Notice that the corner pads for the Vdd rail connect to pins 5 and 25 while the
pads for the Gnd rail connect to pins 15 and 35. The numbers of the remaining
pins can easily be determined from the schematic in figure 6.3.

6.3 Buffers

The wires bonded to the pads present very large capacitive loads on the order
of several hundred fF to 1 pF or more depending on what the pin must drive.
Since most gates drive loads which are significantly less than those at the pins
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Figure 6.3: Schematics describing pad-to-pin connections.

output signals cannot be directly driven from the outputs of your circuit. As
you already know, delays are directly proportional to the capacitive loading on
a gate; thus, a load which is one or two orders of magnitude larger will present
a proportional increase in the delay time going on and off the chip.

The solution to this problem is buffer amplifiers. A digital buffer ampli-
fier provides the increased current necessary to drive the outputs at the pins.
Buffers are simple amplifier circuits and they can be synthesized from inverters.
Smaller buffers resemble a cascade of inverters while larger ones have additional
complexity.

It is a good design practice to buffer critical input signals like clock inputs.
Clocks are often routed using metal and poly layers. As we will see, these layers
also increase the capacitive load. Thus, buffering is important. In addition,
buffering input signals like a clock will increase the noise immunity. Please
make sure that you ONLY buffer DIGITAL signals with the buffers from our
library.

Magic files for 2 buffers, bufferx3.mag and bufferx8.mag are supplied on the
lab web page. Download the buffers and store them in the directory where
your pad frame for this lab will be stored. Download the diode3.mag file. The
bufferx3 is to be used for the input clock and the bufferx8 is to be used for the
counter outputs. These are intended to be used as subcells.

6.4 CIF Files

The final step for an IC project is the submission of the CIF file. You should
recall that the CIF file contains the actual mask layers used by the foundry.
The CIF format was described in this lab manual for Magic Part A.



6.5. LAB INSTRUCTIONS 71

CIF file generation is straightforward:

1) Perform a drc check on the design.

2) Simulate the design using irsim. Place the labels on the pads in order to
obtain the highest level of confidence.

3) Verify the design from the pads via irsim.

4) Perform a final drc check.

5) Set the CIF output style:

:cif ostyle lambda=0.6(nwell)

6) Generate the CIF file:

:cif write myproject

To read the CIF file, do the following:

1) Start magic.

2) Set the CIF input style:

:cif istyle lambda=0.6(nwell)

3) Input the CIF file:

:cif read myproject

6.5 Lab Instructions

1) Modify the serial-carry counter built in last weeks lab. Provide the correct
enable control.

2) Construct the pad frame for the counter.

a) Start magic.

b) :load frame12
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c) Fully expand frame12.

d) :getc MYscCounter

e) Place the counter in the middle of the pad frame.

f) Make the following connections:

i) Connect the counter Vdd to pin 39; label it.

ii) Connect the counter ground to the pad frame ground rail.

iii) Connect the counter Enable to pin 22; label it.

iv) Connect the counter Reset to pin 24; label it.

v) Verify the connections.

g) Connect the counter Clock signal to pin 23:

i) place a box and cursor near pin 23.

ii) :getc bufferx3

iii) Connect the bufferx3 Vdd to the pad frame Vdd rail.

iv) Connect the bufferx3 Gnd to the pad frame Gnd rail.

v) Connect the bufferx3 input to pin 24.

vi) Connect the bufferx3 output to the counter clock signal.

vii) Verify the connections.

h) Connect the counter counter outputs, Q0, Q1 Q2 Q3 to pins 14, 12, 10
& 8:
For each counter output:

i) place a box and cursor the output pin.

ii) :getc bufferx8

iii) Connect the bufferx8 Vdd to the pad frame Vdd rail.

iv) Connect the bufferx8 Gnd to the pad frame Gnd rail.

v) Connect the bufferx8 output to the output pin.

vi) Connect the bufferx8 input to the counter output.

vii) Verify the connections.

i) Check the location pin connections in the pad frame. You should have the
pad frame connections placed in order to supply the package connections
shown in figure 6.4.
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Figure 6.4: Schematic describing pin connections.

j) Save the design as CounterName

k) Perform drc check

l) Verify each pin connection and each counter connection with the select
macro.

6.6 Reporting

1) Use mag2ps to print the completed counter alone.

2) Use mag2ps to print the completed counter & pad frame.

3) tarball the entire directory.

4) Tar zip all magic files, *.ext files and irsim files into a file named: MagicBY ourName.tar.gz.

5) Copy this file to public directory listed on the web page for this lab.
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4 Bit Dynamic Sequencer

Lab Objectives:

The design, layout and verification of a 4-bit sequencer will be completed. The
sequencer will be connected in a pad frame and made ready for design submission
in the MOSIS 1.2µm double-poly CMOS process. The sequencer will have the
following salient features:

§1. Reset, and Enable/Halt.

§2. Parallel load from external output pins.

§3. Up-count and down-count capability.

§4. A parallel load feature which also works with the down counter.

§5. Introduction to irsim, the digital simulator.

7.1 Introduction

A sequencer is a counter which works in a manner similar to that of a program
counter. A sequencer, like a counter, will count from 0 up to the full binary range
it supports. The Enable/Halt command will halt the counter at a particular
count. Once the counter is taken out of the halt state, it will continue to count
in its programmed direction. Sequencers select memory locations which are to
be read by a controller. Instructions are not always read in a sequential order.
Sometimes there is a “jump” command. A jump command requires the reading
of an address which is unrelated to the next state of the counter. This means
that the sequencer must be capable of reading a non-sequential address. The
mechanism for this operation is to switch the next state to a word which is
provided by an external input, e.g. a parallel load function. The parallel load
allows the sequencer to read its next instruction from input pins instead of the
next count in the counter. Finally, this sequencer will also count down, e.g.
count from 15 down to 0. The sequencer must accommodate the parallel load
and the Enable/Halt capability when counting down.
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7.2 Sequencer Specifications

The serial-carry counter (figure 7.1)is the major subsystem in the sequencer.
The changes required in the implementation of the Magic D lab must be included
for the Enable/Halt function to operate. The parallel load will need to be
incorporated. Finally, the down counting can easily be included by selecting
the T-Flip-Flop’s Q output instead of the Q output.

R

QT

R R

Q
T

ClkClk

T Q

Clk

R

Q
T

Clk

C0 C1 C2
C

3

Clk

En

R

Figure 7.1: A synchronous, serial-carry counter.

You will need to develop a high level design. The pin out of the sequencer
is given in figure 7.2. Notice that there are inputs for the word which is loaded
via the parallel load. In addition, you must also provide a switch, e.g. the 2:1
mux, to implement this function.
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Figure 7.2: External pin diagram for sequencer.

The sequencer you are designing will employ a dynamic serial-carry counter.
You will recall that you previously designed static counters by virtue of the
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dynamic flip-flops used for the state control. A dynamic counter will instead
utilize dynamic flip-flops.

The implementation of your sequencer will require some new cells. Thus,
there are two primitive cells you will need to design to complete this project: the
2:1 mux and the dynamic T flip-flop. The selection of an up count or a down
count could be accomplished by wiring nearly every signal to the pad frame.
This places the burden on the circuits operating outside this integrated circuit.
Instead, you must provide an on-chip solution. You will need several sets of 2:1
multiplexers in order to incorporate this feature.

7.2.1 Dynamic Latches & Dynamic Flip-Flops

The D-latch and D-flip-flop in figure 7.3 serve as examples of dynamic storage
elements. The dynamic latch is synthesized from an inverter and a switch. The
switch is either a pass transistor or a transmission gate. Typically, a transmis-
sion gate is used to conserve layout area. The latch is written when the switch is
closed. The dynamic latch will maintain the voltage level at the last instant the
switch was closed when the switch opens. It is assumed that the binary value is
stored when the switch is open. The voltage level at the input to the inverter is
held by storing charge on the parasitic capacitance between the switch and the
inverter. The capacitor, Cp, represents the combined parasitic capacitance from
the drain of the MOS switch and the gate of the CMOS/nMOS inverter. Thus
the dynamic latch maintains its voltage level by storing charge on a parasitic
capacitor while the static latch maintains its voltage level by providing a direct
path to either Vdd or Gnd, saturating the output at the rails. You should also
note that the output of the latch in figure 7.3 is inverted.

Cp

QD

Cp Cp

1D 2 Q

Figure 7.3: General dynamic D-latch & dynamic D-flip-flop.

The dynamic master-slave flip-flop in figure 7.3 is synthesized from two dy-
namic latches (also shown in figure 7.3) with opposite phased switches (hence
the #1 & #2). The parasitic capacitances between the switch and the inverter
is again represented by Cp for the D-flip-flop in figure 7.3. While this capacitor
is usually omitted from schematics it must always be assumed to exist since the
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charge stored on Cp contains the value of the latch or the flip-flop.

The advantage of dynamic flip-flops (and latches) is that they are both faster
and significantly smaller than static flip-flops (and latches). The disadvantage
is that pass transistors are not ideal switches. For example, junction leakage at
the drain will eventually drain the stored charge, thereby changing the stored
value. For high clock speeds this is usually not a problem; however, for clock
periods greater than 200 µSec dynamic flip-flops and latches are unreliable.
The debugging of dynamic logic is also more difficult. It is possible that due
to unexpected charge sharing when the switch changes state and/or junction
leakage that unpredictable behavior can result. A static latch or flip-flop will
almost always work, even if poorly designed. This is not the case for dynamic
storage elements.

A simple version of the dynamic D-flip-flop and T-flip-flop can be con-
structed using the approach outlined above. The resulting flip-flops are shown
in figure 7.4. Notice that n-channel and p-channel transistors are used for the
switches. This provides the opposite clock phasing without the need for a second
clock signal.

QD

Clk Q

R

R

QD

QClk/T

Figure 7.4: Resettable dynamic D & T flip flops.

The T-flip-flop in figure 7.4 requires that a Q output is available to be fed
back to the D input. The Q output in the flip-flop requires an additional
inverter. Otherwise, there will only be a Q output.

The T-flip-flop with an enable can be constructed from the D-flip-flop in
figure 7.4. This is shown in figure 7.5. Note the resemblance to the static T-flip-
flop designed in the Magic B lab. Obviously, the layout of the dynamic D-flip-
flop will be very different than the one from Magic B, although the schematics
symbols are identical at this level.

The T-flip-flop in figure 7.5 implemented with the D-flip-flop in figure 7.4
will be used in the serial-carry counter.
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R Q
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D

Clk

QT/EN Q

Clk

Figure 7.5: T-Flip-Flop with Enable.

7.2.2 2:1 Multiplexer

The 2:1 multiplexer can be implemented as shown in figure 7.6. The use of
n-channel pass transistors imposes some driving limitation on the multiplexer.
That is the reason for depicting the optional inverter at the output. This will
of course invert the multiplexer output.

Sel

O

I 1

I 2

O

Figure 7.6: 2:1 multiplexer.

7.3 Summary

The circuit you are designing is implemented with dynamic flip-flops. While dy-
namic flip-flops dramatically increase speed and reduce area there are problems
which a good designer will examine with a circuit simulator. These problems
can become more pronounced as the feature sizes shrink. Clock feed through
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can cause these types of latches to literally lose data. For example, if the clock
has a rise time which is greater than the delay through an inverter, then it is
possible for dynamic flip-flop can become transparent, meaning that the input
is not properly latched. Inverters in deep sub-micron technology have delays on
the order of 100 psec. Providing/guaranteeing shorter rise times at the clock
inputs to the flip-flops will become more difficult to obtain. You should also
consider that the clocks in these circuits must be routed to many places and
that risk increases as the size grows. Minimally, the inverter thresholds will
need to be shifted to minimize this problem. Replacing the pass transistors
with transmission gates is only a partial solution. A two phase clocking system
is needed in order to eliminate the clock feed through problem. This is the
most likely design approach used in deep sub-micron technologies. While these
circuits have their limitations they are very compact and can still be made to
be useful if the designer is aware of the problems and takes proper measures to
minimize the risks presented.

7.4 Instructions

1) Design a top level block diagram of the sequencer. Include all of the func-
tions listed in sections 1 and 2.

2) Design the high-level tests of the sequencer (assume that you will use irsim).

3) Design the T-flip-flop with the enable.

i) Draw the layout of the D-flip-flop from figure 7.4 in magic.

ii) Extract and simulate the D-flip-flop in HSpice; verify the correct oper-
ation.

iii) Design the T-flip-flop in figure 7.5 using the dynamic D-flip-flop.

iv) Extract and simulate this T-flip-flop; verify the correct operation.

4) Design the T-flip-flop with the enable.

i) Draw the layout of the 2:1 Mux shown in figure 7.6.

ii) Extract it and verify the correct operation using HSpice.



80 CHAPTER 7. 4 BIT DYNAMIC SEQUENCER

5) Design the sequencer using the necessary 2:1 multiplexers and the 4-bit serial-
carry counter. Implement the counter with the T-flip-flops you verified in
HSpice.

6) Perform the layout of the sequencer.

7) Extract the layout of the sequencer and verify correct operation in irsim us-
ing the test designed in step #2.

8) Load frame12 and save it as ProjectI.

9) Include the sequencer and appropriate buffers as subcells. Wire the pad
frame using the I/O pins specified in figure 7.2.

10) Verify the operation of the sequencer at the pad frame level using the pads
in irsim.

11) Provide a separate D-flip-flop and T-flip-flop for lab testing; the unused pins
on the 40 pin DIP will allow a sufficient number of connections. Make sure
that you provide buffers for clock inputs and flip-flop outputs.

7.5 Reporting

1) Provide the block diagrams and test plan.

2) Provide plots of the D-flip-flop, the T-flip-flop, the 2:1 multiplexer, the spice
netlists and the simulation results.

3) Provide plots of the sequencer and the sequencer in the pad frame.

4) Provide the irsim scripts and test results (from irsim).

5) Tar zip all magic files, *.ext files and irsim files into a file named:
ProjectIndY ourName.tar.gz.

6) Copy the “tarballed” directory to the public directory listed on the web page
for this lab.



Appendix A

Introduction to HSPICE (or SPICE) in

IC Modeling

§1. To familiarize students with a basic understanding of the most important
types of circuit analysis available using HSPICE and SPICE simulators.

§2. To provide instruction for the representation and testing of actual circuits
in HSPICE/SPICE.

§3. To provide a tutorial on HSPICE/SPICE commands, such as, include
statements, sub-circuits, parameters, etc.

§4. To provide an overview of the level 3 and BSIM models and how they
influence digital integrated circuit design. Also provide an overview of
customized models.

Pre Lab:

1. Read Chapter 1 of the textbook pp. 1-25.

2. Read this lab. Write out the net lists prior to the lab.

3. Review ”Recent SPICE Parameters” on the ELE 447 Course web page.
Download the ”BSIM3 Model HSPICE File”.

A.1 Background.

Simulation of analog circuits is critical to developing reliable custom integrated
circuits. IC design can be subdivided into several tasks: design of the cell
library, hierarchical design, layout, design verification and measurements of the
actual prototype circuit. The design of the cell library, parts of the hierarchical
design where either power and/or timing is critical and verification involve the
simulation of analog circuits. Often, when the measured prototype circuit does
not function properly or works correctly but does not meet speed or power
consumption requirements, circuit simulators are used in the debugging process.

Every digital logic gate is actually an analog circuit. Logic gates, latches
and flip flops, for example, have voltages which can assume any value within

81
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a specified power supply range. This means that a good digital IC designer
must understand the analog circuit parameters and how they will impact a
particular digital system. This cannot be accomplished without effective use of
a circuit simulator. The design of a dynamic latch, for example, is best verified
in a circuit simulator. It is impossible to verify the operation of memory cells
without a circuit simulator. Circuit simulation is important in designing low
power gates since the power consumption can be reliably predicted. You will
also learn that not all digital cells restore the logic levels to 0 and the supply
voltage. This is also not always accounted for during digital simulation.

Important effects due to device Physics are incorporated into a good analog
circuit simulator. This is very important because the IC process technology
today will minimally yield thousands of devices for a single fabrication cycle.
Process parameters due to the device Physics will cause the performance of
identical circuits to vary during fabrication. This means that a particular dig-
ital system must be able to operate reliably over the variations in the process
expected to occur during fabrication runs. In addition, the operating environ-
ment, namely ambient temperature and case temperatures (of the IC package)
also impact proper operation (especially for semiconductor devices). Since de-
vice Physics and temperature are intimately related, analog circuit simulation
is the only means of effectively evaluating that a system (in large quantities)
will work over the specified temperature range.

Due to the more precise analog modeling of each transistor, circuit simulators
will provide accuracy well beyond that of digital simulators; however, circuit
simulation has its limits, particularly when the number of transistors is large
as is the case in subsystems of any complexity. Since the time steps tend to be
nano-seconds or less, 1,000 or more additional computations may be required
to model 10−6 seconds of activity ! The numerical accuracy is most effectively
used to verify smaller cells in a large system.

There are two major types of simulators: digital and analog. A digital
simulator only recognizes logic levels, 0 or 5 volts for the “0” and “1” in a 5 volt
circuit, for example. Digital simulation is most useful in the verification of very
large systems which assume the lowest level functions work properly. Precise
timing analysis, measurement of the restoration of logic levels through drivers
and comparison of performance over many wafer fabs can only be accomplished
with a good circuit simulator.

Intelligent approaches to efficient use of CAD tools must be incorporated
when the accuracy of a circuit simulator is needed for a very large digital IC.
Since the entire IC is not easily simulated with an analog circuit simulator, then
the measurements of a small circuit or several small circuits can be used to infer
details of the operation at the IC level. The reason this is possible is that many
IC designs involve the reuse of many identical primitive cells in order to realize
a complex operation. One simple example is in the simulation of an adder;
typically, the carry operations introduce complexity beyond what can be seen
in simulating only a single-bit adder.

In ELE 447 we will be using HSPICE.
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A.2 The History of SPICE and its Derivatives

The Simulation Program with Integrated Circuit Emphasis (SPICE) was cre-
ated by Professor Donald Pederson in 1972 and presented at the 16th Mid West
Symposium on Circuits & Systems in April, 1973[?]. Professor Pederson made
the source code for SPICE (known as SPICE1) publicly available from the Uni-
versity of California, Berkeley. SPICE development was funded by the U.S.
Government for many years and it was one of the first software packages re-
leased into the public domain. Improvements were made and this lead to SPICE
version 2 (SPICE2), developed by Dr. Lawrence Nagel[?] in 1975. Dr. Nagel
started work in circuit modeling as a graduate student and scores of talented
graduate students followed adding improvements to future releases of SPICE.

Because of its free cost and wide spread use in universities designers in indus-
try and academia adopted SPICE as their primary circuit simulation tool. Be-
tween 1975 and 1983, development continued on advanced versions of SPICE2.
In 1983, the final version of SPICE2, version G.6 (SPICE2G.6) was placed in
the public domain[?]. SPICE1 and SPICE2 were developed in Fortran, which
was not the most flexible implementation. During the 1980s, the development of
SPICE3 commenced. SPICE3 was written in C and early versions were released
in during the 1980s. Although the most recent public version of spice is SPICE3,
most modern SPICE simulators trace their starting point to SPICE2[?], version
2G.6. The U.S. Government funding for the SPICE3 development was signif-
icantly less than what had been available during the development of SPICE2.
Less attention was given to the details during the writing and verification of
SPICE3. When SPICE3 was tested, there were many problems; some remain
unresolved[?]. Thus, SPICE2 is often referred to as the “original” SPICE. Pro-
fessor Pederson is and Dr. Nagel share the credit as the “originators”’ of SPICE;
however, many people have made valuable contributions. Commercial simula-
tors have worked from SPICE2G.6 while SPICE3 has matured to the point
where it is also reliable.

SPICE has become the industry standard for circuit simulation. Even the
high-end cad suites which have fully integrated circuit simulators refer to these
as spice like. Most foundries which fabricate ICs provide SPICE compatible
circuit models so there is wide-spread compatibility. There are many commercial
versions of SPICE available. This is owed in large-part its release into the public
domain; it provided product developers with a common starting point which
reduced the time and cost of bringing software to the marketplace.

The choice of a particular commercial version of SPICE depends on the spe-
cific interest of the buyer. Developers of commercial products integrate some or
all of the features of the public domain versions of SPICE into their products.
Since the vendors are under no obligation to include all of the features, the con-
sumer must be aware of improvements and limitations of specific commercial
versions. These products tend to target specific areas. For example, for many
years P-SPICE[?] did not employ the most complex models for sub-micron IC
design and currently, these are difficult to get at directly. The direction of
PSPICE is to be integrated with commercial circuit board level design pack-
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ages. HSPICE[?], on the other hand, has always had the less capable graphical
interface but it was one of the first circuit simulation tools with reliable mod-
els for sub micron transistors in place. Today, many other circuit simulators,
such as Smart SPICE, have caught up providing more choices in the selection
of commercial SPICE tools. HSPICE and SmartSpice are backward compatible
with Berkeley SPICE (the public domain version), with a few minor exceptions.

Public development in circuit simulation today tends to focus more on ad-
vanced models of Complimentary Metal Oxide Semiconductor (CMOS) tran-
sistors. Over 90% of the integrated circuits in production today are realized
CMOS technology. The modeling of deep sub-micron CMOS transistors (e.g.
transistors with channels much shorter than 500 nm) is a work in progress due
to the constant shrinking of device geometries. For many years, the capital
investments in this area have supported work at the University of California,
Berkeley, also the developer of many of the current short channel models as
well as SPICE itself. The results of this work are often integrated within the
commercial versions of SPICE simulation tools.

A.3 Description of the SPICE Simulator

The SPICE simulator consists of two distinct numerical analysis tools: the
simulation engine itself and element models. The simulation engine requires I-
V characteristics for each element in a particular circuit. For any circuit element
which has a non-linear I-V characteristic an element model is required. Refer to
the circuit in figure A.1. The circuit elements (e.g. Ek) are generalized and can
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Figure A.1: Example circuit.

refer to one of 3 types of elements: 1) resistor, with a linear I-V characteristic,
2) charge storage element, e.g. a capacitor or inductor or 3) an element with
a non-linear I-V characteristic such as a diode or a transistor (although more
terminals must be identified). The nodes in the circuit are numbered.

If the circuit elements in figure A.1 are all resistors then the nodal or loop
equations are solved in a manner which is numerically equivalent to the tech-
niques you were taught in your circuit analysis course[?]. Gaussian Elimination
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is used to solve the matrix equations. If one or more of the circuit elements is a
charge storage device, such as a capacitor, then the element must have a model
which accounts for the I-V characteristic[?]. For instance, a DC voltage applied
to the terminals of a capacitor will yield a non-linear response as a function of
time. SPICE models will tend to linearize the response over small ranges. If the
voltages are measured over time, the case during transient analysis, then the
model of the capacitor must be solved at each time-step via numerical integra-
tion. If one or more of the elements is a non-linear device, such as a diode or a
transistor, meaning that there is a non-linear I-V characteristic, then a device
model is used and the system of equations can no longer be solved using Gaus-
sian Elimination. The Newton-Raphson algorithm, a non-linear root-finding
method, is used to solve the system of equations[?]. This is done in a sequence
of repeated computational steps where the algorithm will hopefully converge to
a solution. This algorithm is not always guaranteed to reach a solution, hence,
the infamous non-convergence error message.

When solutions are required over a series of time steps, the case when one is
using transient analysis, then, a time-step algorithm is employed. A time step
algorithm determines appropriate times to find solutions to the nodal equations.
When there is a large change the time-steps are smaller and when not much
is expected to change the computations occur less frequently with respect to
time[?]. Modern SPICE simulators have at least two time-step algorithms[?].

The SPICE models consist of parameterized algorithms which help the sim-
ulation engine compute nodal voltages and currents for the particular types of
analysis required. The semiconductor model parameters are extracted during
each wafer fabrication and then incorporated into the SPICE modeling algo-
rithm. The operation of the SPICE simulator is described in figure A.2.

Wafer

Parameter
Extraction

. . .
MOS

Model Model
MOS 

Circuit
Netlist

Commands
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Plots

Output Files

Computational
Engine

SPICE
SIMULATOR

Figure A.2: Spice simulator block diagram.

It is important to realize that there is some variance between individual die
on a given wafer. There are also differences between die selected from different
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wafers. A unique set of model parameters is extracted from each wafer fab for
this reason. In addition there are also model parameter sets known as corner
parameters which cover the extent of the variance for a particular process.

This section describes the internal workings of a SPICE simulator. The user
must communicate with the simulator. This is done by preparing a description
of the circuit and the signals used as inputs. In addition there are voltage and
current sources, e.g. the net list. The user selects one or more types of analysis,
such as DC, AC, transient, etc. The output of the SPICE program provides
data and graphical information to aid the user in the analysis and synthesis of
electronic circuits.

A.4 Introduction to Analysis Using SPICE

SPICE requires an input file, often referred to as a SPICE deck. Before many
of you were born, computers did not have files. Instead, each line in a file was
entered onto a card and it was encoded with holes punched into the card. Al-
though computers with batch inputs (e.g. card decks) have long since vanished,
the name SPICE deck is still used today. Many references to cards and decks
are made due to the age of the program. The input file must contain, a title
(commented with *), model parameters for semiconductors, a net list, a list of
analysis commands, output commands and an end statement, .end.

The information necessary for you to efficiently work with SPICE will be
presented in the following sections.

A.4.1 The Net List

The net list provides a line by line description of the components in a circuit.
Each component will have a particular name and node connections. Common
node names are used to determine how the circuit is connected. The net list also
provides device parameters, a model name (if appropriate) and possibly device
geometries (for transistors and diodes). In ELE 447 the most important devices
will be p-channel and n-channel enhancement mode MOS FETs and capacitors.

A net list can be generated from a hand drawn schematic. Net lists can
also be generated via schematic capture from an automated schematic entry
program. If the circuit exists in a layout editor, the net list can be extracted
from the layout. You will need to know how to generate a net list from a
schematic as well as drawing the schematic from a net list. Although this seems
like a giant step backward, it is necessary. Later you will be working on the
layout of gates. The skills you will develop in interpreting netlists will help
develop the background necessary to become competent with the layout editor.
Designers need to have some sense of how net lists are assembled in order to
visualize the construction of logic cells.

The first step in this process is to draw the circuit to be analyzed. The
second step is to label the nodes of the circuit. The node labels in SPICE
can be either numbers or words. The node ”0” is hard wired to the ground
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connection in SPICE. The inverter in figure A.3 illustrates the node labeling

Vin

Gnd
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Figure A.3: Net list labeling for the CMOS inverter with a capacitive load.

scheme. Node 1 is tied to Vdd. Node 2 is tied to the gates of the inverter.
Node zero is tied to the source of the n-channel device and also to the capacitor
ground. The drains of the n-channel and p-channel transistors are connected
together and to the output capacitor. Capacitors are seldom present in digital
integrated circuits. The purpose of the capacitor is to estimate the load on the
inverter. The load often contains gates, drains and sources of other transistors,
poly silicon lines, metal lines or the pads for output pins. The last, but most
important connection, is the bulk substrate. Remember, the MOS transistor is
a 4-terminal device.

The net list entry for an MOS device contains the following fields:

Dname drain gate source substrate modelName W L AS PS AD PD

Dname is the device name. You must have a unique device name for each
device in the net list. The nodes for the drain, gate source and substrate are
then listed. This order NEVER changes. The model name follows. Then the
channel width, W, and the channel length, L, are listed. Optional parameters
are AS, PS, AD and PD for the source area, source perimeter, drain area and
drain perimeter. These are useful in estimating the parasitic capacitance of the
source and drain. For this lab, the optional parameters are omitted. We will
assume all parasitic capacitances are lumped in CL.



88APPENDIXA. INTRODUCTION TOHSPICE (OR SPICE) IN IC MODELING

* D G S SS Model W L
M1 3 2 1 1 CMOSP W=4u L=2u
M2 3 2 0 0 CMOSN W=4u L=2u
CL 3 0 0.1 pF

The net list for the inverter with a capacitive load of .1 pF in figure A.3 is
given above. You should be able to write out the net list for any of the simple
logic gates.

A.4.2 SPICE MOS Transistor Models

Because the majority of commercial ICs are developed in CMOS, with the
enhancement-mode Insulated Gate Field Effect Transistor or the MOS Tran-
sistor (both IGFET and MOS refer to the same device), and the device ge-
ometries are constantly shrinking. This leads to a number of short-channel
effects which tend to cause errors which lead to differences between the sim-
ulation result and the measurement of the same circuit fabricated in Silicon.
The SPICE answer to this is to advance generalized MOS transistor models.
Thus, there are many semiconductor device models provided within HSPICE
and most are dedicated to the MOS transistor. Selection of the level parame-
ter indicates the desired model. The Level-1 model, developed by Schichman
and Hodges[?], provides a very simple description of the MOS transistor based
entirely on derivations from simple device physics. The Level-2 model, devel-
oped by Grove and Frohman[?, ?], incorporates more detailed device physics.
The square law relationship for the I vs V curves is assumed with some adjust-
ments. These models are closely related to the transistor models presented in
this course.

While a level 1 model is efficient for hand calculations, the resulting predic-
tions do not agree with smaller transistor geometries (e.g. less than 5µm or so
...). Through comparisons between simulation results and actual Silicon devices,
solid-state effects which were neglected become more dominant as the transistor
geometries are reduced[?]. The Level-3 model[?] represents an early attempt at
empirical modeling. The device physics of the transistor are approximated, re-
lying on parameters which are a function of the device geometries in order to
obtain better agreement with fabricated transistors. The simulation of smaller
device geometries evolved into grid-based models, where subsets of empirical pa-
rameters are applied for different geometric classes. This is approach is referred
to as “binning”. Binning introduces new problems due to discontinuities at the
boundaries between grids. Numerical smoothing algorithms were incorporated
to eliminate the effects due to boundary discontinuities. This lead to the de-
velopment of what was originally known as the Berkeley Short-Channel IGFET
Model (BSIM)[?] or BSIM1. Since BSIM1 several newer versions have been in-
troduced, BSIM2, BSIM3 and BSIM4 as device sizes have continued to shrink[?].
BSIM models provide the most accurate means of simulating sub-micron, MOS
transistors. While they are the most accurate models, this does not necessarily
mean that results obtained from BSIM are always in good agreement when pre-
dictions are compared with measurements from the fabricated devices. BSIM
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should model devices more accurately than earlier SPICE models. There are
many factors which can degrade the model parameter accuracy and much of
this is beyond the scope of ELE 447.

The level-1, level-2 and level-3 models are referred to as 1st generation mod-
els. BSIM1 and BSIM2 models are referred to as 2nd generation models. BSIM3
and BSIM4 are referred to as 3rd generation models[?]. In ELE447, we will use
Level 3 and BSIM3 models.

From time to time, starting with this lab, you will also be asked to use
simple level 1 models. The interesting part of this is that by specifying just
a few parameters, results which match your hand calculations quite accurately
can be obtained. Note that the unspecified model parameters are also required;
default values assumed by the simulator for each parameter not found in the
model used by the SPICE deck.

The properties of the MOS devices will change from one wafer fabrication to
the next one. It is impossible to keep all parameters constant for each fabrication
run. This is the reason model parameters are extracted from wafers following
each fabrication. A good designer will select several fabrication runs which
represent the “fast”, “slow” and typical parameters when characterizing circuits
which impact timing. The exact model parameters can be listed in the input
file, but it is preferable to use the include statement as follows:

.include ”Level3Parameters.txt” * level 3 model
or

.include ”BSIM3Parameters.txt” * BSIM3 model

This will allow you to obtain results for several fabrication runs with several
sets of level 3 parameters while only needing to change a single statement in the
input file.

oxt
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Figure A.4: MOS Transistor.
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A simple diagram of an n-channel MOS (nMOS) transistor is illustrated in
figure A.4. The green areas represent the highly doped nType Silicon (e.g. n+)
drain and source. The current in the nMOS transistor flows from the drain to
the source. Since the MOS transistor is symmetric with respect to the source
and drain the direction of current flow determines the source and the drain.
In this case the green regions, labeled A and B, are the drain and the source,
respectively. The red area represents the gate which is separated from the
channel by a thin layer of SiO2, the oxide or gate oxide layer. The channel lies
under the gate oxide is lightly doped, pType Silicon (e.g. p−; white regions);
the substrate or Body of the transistor sets the potential of the channel and the
pType Silicon under the source and drain. Since this voltage must be defined
there is one additional terminal known as the substrate or body contact. nMOS
and pMOS transistors are 4-Terminal devices, e.g. G, D, S & SS. Note that the
doping types, concentrations and substrate contact are not shown in figure A.4.
The distance between the drain and source, (e.g. L), is referred to as the channel
length and the shortest distance that L can assume is known as the minimum
feature size. The minimum feature size is one of the most important parameters
influencing the operation. A reduction in L leads to better performance at the
price of greater difficulty in its fabrication. The channel width is identified by
the distance labeled W. The number of charge carriers present in the channel is
controlled by the vertical electric field between the gate and the channel (which
is why the substrate contact is of great importance). The current direction is
set by the electric field from the drain to the source.

We will identify the most important nMOS transistor parameters. First,
recall that the dimensions of the area under the gate, L and W, represent the
channel length and width respectively. Increasing W will increase the current
flow through the channel. Increasing L will require the current to flow over a
longer distance, thereby reducing the current flow through the channel. The
p-channel MOS transistor has an identical dependence on the channel length
and width. The major difference is the polarity of the terminal voltages and the
doping are reversed in the pMOS transistor with respect to those of the nMOS
transistor. This is why the combination of an nMOS and pMOS transistors to
realize logic gates is referred to as Complimentary MOS, or CMOS logic. One
additional fundamental difference between nMOS and pMOS transistors is that
the channel conductance is lower for the pMOS transistor by a factor of 2-3
with respect to an nMOS transistor. This is because the charge carriers in a
pMOS transistor are holes instead of electrons. The threshold voltage to turn
on the p-channel transistor is negative with respect to the source voltage (and
substrate voltage).

The β of an MOS transistor relates the transconductance to the device ge-
ometries. βn and βp are defined as:

βn = κn(W/L)n, βp = κp(W/L)p (A.1)

where κn and κp are the intrinsic channel conductances ([Amps
V 2 ]).

β is directly proportional to W and inversely proportional to L. Using this,
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a direct relationship between the current and the device geometry represented
by β is given by

I ∝ β (A.2)

where I is the current in figure A.4. κn and κp from equation (A.1) are defined
as

κn = µn

(

ǫox
tox

)

, κp = µp

(

ǫox
tox

)

(A.3)

where µn and µp are the surface mobility of the n-channel and p-channel
MOS transistors, tox is the oxide thickness under the gate (shown in figure A.4)
and ǫox is the permittivity of SiO2. The mobility is the ratio the average drift
velocity of the charge carriers in the channel and the electric field applied to the
gate.

Finally, the oxide capacitance (per-unit area) of the gate, Cox, is found by
dividing the dielectric constant by the oxide thickness

Cox =

(

ǫox
tox

)

(A.4)

where ǫox = 3.9ǫo = 3.45x10−13F/cm. You should realize that ǫo is the
permittivity of free space, a fundamental constant.

Models for the n-channel and p-channel transistor level-3 similar to the ones
you will be using are shown below. The parameters we have discussed are
enclosed in boxes. TOX is the oxide thickness in meters, VTO is the transistor
threshold voltage in volts (when the substrate and source are shorted), KP is κ

in [Amps
V 2 ], and U0 is the mobility in [ cm2

V olt−Sec ].

1. .MODEL CMOSN NMOS LEVEL=3 PHI=0.700000 TOX=3.0400E-08 XJ=0.200000U TPG=1

2. + VTO=0.6221 DELTA=9.0430E-01 LD=1.1270E-07 KP=7.6708E-05

3. + UO=675.3 THETA=7.8760E-02 RSH=6.9150E+01 GAMMA=0.6478

4. + NSUB=1.6310E+16 NFS=5.8890E+11 VMAX=2.1090E+05 ETA=1.2550E-01

5. + KAPPA=3.5810E-01 CGDO=1.9202E-10 CGSO=1.9202E-10

6. + CGBO=4.2839E-10 CJ=2.8122E-04 MJ=5.1486E-01 CJSW=1.4887E-10

7. + MJSW=1.0000E-01 PB=9.6412E-01

8. .MODEL CMOSP PMOS LEVEL=3 PHI=0.700000 TOX=3.0400E-08 XJ=0.200000U TPG=-1

9. + VTO=-0.8289 DELTA=2.1790E+00 LD=1.1000E-09 KP=2.1275E-05

10. + UO=187.3 THETA=9.8100E-02 RSH=5.9990E+01 GAMMA=0.3337

11. + NSUB=4.3290E+15 NFS=5.9090E+11 VMAX=2.4570E+05 ETA=2.6470E-01

12. + KAPPA=7.7710E+00 CGDO=5.0000E-11 CGSO=5.0000E-11

13. + CGBO=4.3405E-10 CJ=2.8763E-04 MJ=4.4034E-01 CJSW=2.0137E-10

14. + MJSW=1.2309E-01 PB=7.5007E-01
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A.4.3 Sources, Power, Ground

You will quickly learn that circuits in SPICE do not work well if power and
ground connections are missing. The simulator is just as bad as the infamous
proto-board, with the major exception being that you will destroy fewer com-
ponents using SPICE.

If you only apply power and ground the circuit, not much will happen. You
must also apply a signal source at the input (hoping the circuit was correctly
designed). There are several signal sources in SPICE: the sine wave, a piece-
wise linear function and the rectangular pulse. For the inverter we would like
to provide a rectangular pulse. For example, Vdd and Vin can be implemented
by writing the following statements:

Vdd 1 0 5V
Vin 2 0 pulse(0 5 5n 100p 100p 20n 45n)

This provides a 5 volt supply with respect to ground. The pulse statement
contains the low voltage, high voltage, delay, rise time, fall time, pulse width
and period. In the example, the pulse will transition from ground to 5 volts
after 5 nsec. It has a 100 psec rise and fall time, it has a duration of 20 nsec
and it repeats every 45 nsec.

A.4.4 Types of Analysis Available

There is still not much that will happen in spite of having a net list properly
connected to power and ground with an input signal source. You must specify
the type of analysis for SPICE to perform, the output format, and specific nodes
you will need for the results of a particular analysis. The most important types
of analysis are DC, transient and AC. There are also other types of analysis
which include the operating point, small signal transfer function and pole-zero
analysis.

The DC analysis provides output voltages for a specified range of input
voltages. Low frequency operation is assumed. For example:

.DC Vin 0 5 0.1

.print DC v(3)

.plot dc v(3)
This will provide voltages for the circuit at each note based on a DC input

voltage ranging from 0 to 5 volts, incremented by .1 volt at each step. The print
and plot commands provide the output voltage at node 3 for each input voltage
step.

The transient analysis provides time series information. Over a specified
time interval, the circuit response to a selected input, such as the rectangular
pulse, is recorded. For example:

.tran .1 n 50n

.print tran v(2) v(3)

.plot tran v(2) v(3)
The response of the inverter is computed from 0 to 50 nsec in .1 nsec steps.

The original input pulse at v(2) and the inverter output v(3) are recorded nu-
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merically and in a plot.

A.4.5 SPICE Specific Commands

The option statement is necessary for plotting. This statement needs to be
included in the input file:

.option probe post=1
Global device scaling can also be performed. For example, if you need to

scale an entire circuit by 0.3u, one would include a scaling statement in the
input file:

.option probe post=1 scale=0.3u

A.4.6 Running SPICE (Specific to HSPICE)

HSPICE is run at the command prompt. The printouts from the list file can be
obtained directly from the command line. If a printout of a particular analysis
is all that is needed then HSPICE can be implemented as follows:

% > hspice inputFile.sp > inputFile.lis
The redirect symbol, >, in unix tells the operating system to write the

contents to a file. Without the redirect symbol and the file, the statement,
“hspice inputfile.sp”, the output will go directly to the computer screen.

HSPICE results can be viewed graphically using the command cscope. Cscope
is a graphical interface capable of reading the output plot files generated by
HSPICE. You will need to open the plot files once in the graphical tool and
then run the program.

A.5 Measurements

A.5.1 rise time & fall time

The rise time is an estimate of the amount of time it takes for the output of a
logic gate to transition between the ”0” state and the ”1” state. The problem
with such an estimate is that it is difficult to determine precisely where the
transition starts and ends. The most common accepted approach to overcome
this is to measure the time interval over the linear portion of the curve, as shown
in figure A.5. This approximately measures the slope over the linear portion of
the output waveform. If we keep the same V1r and V2r, e.g. the voltage levels,
the rise and fall time for a logic gate output will always have the same ∆V ,

then we need only record the time, ∆tr. This provides a relative estimate
of the speed of a particular gate. By keeping the voltage range constant, direct
comparisons between gates can be made. The fall time measurement is defined
as the time it takes for the output of a logic gate to transition from the ”1”
state to the ”0” state. This result can be obtained in a manner similar to the
method described for the rise time measurement. The same voltage ranges are
used. Traditionally, the rise time and fall time voltage ranges are chosen to be
10% of the maximum value and 90% of the maximum value.
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Figure A.5: Rise and fall time.

As technologies change, particularly as device sizes shrink and voltage sup-
plies are lowered, alternative definitions of rise and fall time might be used. It
is a good practice to keep these measures consistent when making relative com-
parisons. We will see other definitions of rise and fall time in our text book[?].
Despite the text book definitions, the rise and fall time definitions described
earlier in this section will be employed because we will be working with a 5 volt
process.

A.5.2 Inverter Threshold

The threshold of a gate is the lowest input voltage which causes a logic transition
to start at the output. The gate-threshold of a CMOS inverter, VINV th, is given
by

VINV th =
Vtn + (VDD + Vtp)

√

µp(W/L)p
µn(W/L)n

1 +
√

µp(W/L)p
µn(W/L)n

(A.5)

where Vtn, Vtp, µn, µp, (W/L)n and (W/L)p are the n-channel and p-channel

device thresholds, mobilities and geometries. Also notice that
µp(W/L)p
µn(W/L)n

is equal

to
(

βp

βn

)

, since Cox will be identical for both n-channel and p-channel MOS

transistors.

The gate threshold can also be found graphically. Plot the transfer curve,
Vout vs. Vin characteristic for the inverter. Then, plot the line Vout = Vin.

The gate threshold is given by the intersection of the transfer curve and the
line Vout = Vin as shown in figure A.6. This method works for any logic gate.
There are 2 possible ways to do this in SPICE. Can you think of a way to do
this in SPICE ?
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Figure A.6: Graphical method used to find Vth.

A.5.3 Gate Delay

The gate delay is defined as the time it takes for the output voltage to reach
the input voltage threshold after the instant the input voltage crosses the input
voltage threshold. Gate delay is defined separately for both the rising and falling
inputs.

Vthf

Vthr

t∆ dr
t∆ df

Vout

VoutVin

Vin

Vdd

Gnd

Figure A.7: Rising and falling gate delay time.

This is illustrated in the diagram in figure A.7. Notice that in figure A.7 we
have separate delay times for the rising and falling input step. The gate delay
definition is sometimes simplified by assuming symmetric thresholds, each at
(

VDD

2

)

. The gate delay is then measured from the time that the input crosses
(

VDD

2

)

to the time that the voltage change of the output crosses
(

VDD

2

)

. In this
lab, we will be interested in finding exact delay times, so, we will measure the
logic thresholds of the inverter.



Appendix B

Elementary IC Economics

This appendix provides simple examples which illustrate the steps required to
estimate the variable cost per die and the non-recurring engineering costs (NRE)
associated with integrated circuit fabrication. The basics of cost analysis are
also presented. The goals are:

§1. Obtain preliminary UPC estimates at the die level.

§2. Develop a “reasonable” approach to estimate the total number of working
die from a wafer lot.

§3. Estimate the total cost and profit as a function of the number of die
fabricated.

B.1 Introduction

The market for integrated circuits is composed of buyers who are very discrimi-
nating. The reliability is expected to be extraordinary. The ratio of the number
of working die to the number of die fabricated, the yield, is expected to be well
above 90%. The development period must be minimized due to short prod-
uct life cycles (you do not want to have your device ready at a time when the
industry has moved away due to obsolescence).

There is a very large investment in the design, layout, and testing before
the first production part can be produced. In addition, one must also advertise
thus, the marketing and sales need to be included as part of the investment.
The investment or fixed cost is often referred to as the non-recurring investment
(NRE).

Success of full custom integrated circuit (IC) design is driven by economics;
namely volume. The NRE can range from several hundred thousand to many
millions of dollars yet the selling price of a single part, e.g. the packaged die sales
price often ranges from $0.50 to $1.00. The price you expect to pay for a candy
bar! That is the price the customer expects for the production integrated circuit.
There are two important factors which determine a project to be profitable: (1)
the per unit selling price must be greater than the per unit production cost and
(2) the demand must be sufficient to earn money on the NRE.

96
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B.2 Break-Even Point Analysis

There are some relations for cost which are used by our colleagues in business.
The first set is the definition of cost, given by

Cost = UnitCostXN + FC (B.1)

where UnitCost is the cost to produce a single unit, N is the number of units
produced and FC is the fixed cost which actually would be the NRE from the
previous discussion. They are one in the same.

Profit can be defined as difference between revenue and cost. For simplicity,
revenue is the product of the unit price and the number of units sold. For a
given number of units sold the profit can be expressed as:

Profit = Revenue− Cost = (price − UnitCost)XN − FC (B.2)

where price is the per-unit price.
One can see that both profit and cost are defined by linear equations; that

is, they are of the form Y = mX + b where the value Y as a function of X
is found using the slope, m and the intercept, b. This means that there is a
variable cost and a fixed cost. There is also a variable profit per unit which is
referred to as the contribution per unit. Contribution is defined as

Contribution− per − unit = (price− UnitCost) (B.3)

TotalContribution = (price− UnitCost)XN

This means that profit can also be defined as

Profit = TotalContribution−FC = Contribution−per−unitXN−FC (B.4)

From this relation one can see that profit is equal to −FC when N = 0 and
it becomes positive only when the total contribution exceeds the value of FC.

When investing in a product, it is useful to know how many products one
must sell before the investment produces a profit. This is often expressed
in the following way: the number of products sold, N which makes FC =
TotalContribution, hence a profit equal to zero. This is known as the Break-
Even Point and the name indicates exactly what it means, e.g. how many units
must be sold to recover the investment. The Break-Even Point, BEP, is defined
as

BEP =
FC

Contribution− per − unit
=

FC

price− UnitCost
(B.5)

The BEP is a very useful metric for the investor(s). If the total demand
for a product is less than the BEP, the investor will not recover the investment;
however, if the demand for the product is much larger than the BEP it is possible
that the investor will earn a great deal on the investment.

The BEP value is only reliable if FC, UnitCost and price can be found with
good accuracy. FC and UnitCost can be found from the design costs and the
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production cost. The foundry often has good information for one to compute
the total cost.

The stakes in this aspect of a business, especially a start up company, are
very high. The sales price and demand must be obtained from the sales and
marketing people. They have an important job. If their estimates are incorrect,
investors can lose a great deal of money. The one thing you must learn about
investors in a business plan is that paying them back is priority #1! Investors
are not motivated by shear generosity. Their only motivation to invest in the
first place is to earn more on their money over time than what they could in
a bank account or a mutual fund; who could blame them. If they earn money
on your idea, either the same investors will return or investors with greater
resources will show up. If they lose their money then you can be sure there will
be NO second opportunity. All kidding aside, there is not enough that can be
said about being accountable when people place their trust in you.

B.3 IC Wafer and Yield Estimates

In order to estimate the cost of a custom integrated circuit design some infor-
mation about the wafer fabrication must be known. The wafer is purchased
in a lot; this means that the price quoted for several or more wafers. The lot
sizes vary depending on the process and the foundry requirements. Thus, the
cost per lot and the lot size must be known. The wafer diameter must also be
known. Finally, the number of defects per unit area, the defect density, must be
known. This number, the defect density, is considered proprietary to the vendor
or foundry. It would be a criminal act to distribute proprietary information.
Often this type of information will only be provided with a confidentiality or
a non-disclosure agreement. We will use an arbitrary defect density value for
teaching purposes.

B.3.1 Total Die per Wafer

The first step is to compute the total number of die per wafer. We assume that
rectangular die are printed over a circular wafer (the wafer is actually flat on
one side). Thus, the number of die per wafer does not quite divide evenly into
the wafer area. Die which approach the edges cannot be used; you are also
not allowed to combine two or more fractional die into one so these cannot be
counted at all. The number of die per wafer can be estimated using[1]

Ntotaldie =
πR2

Adie
− πD√

2Adie

(B.6)

where Ntotaldie is the total number of die, R is the radius of the wafer, D is the
diameter of the wafer and Adie is the area of the die itself.

It is not certain that the entire wafer will be patterned with die. In fact,
this is usually not the case. possible that a number of potential die sites on the
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wafer are to be used by the fabricator. So this estimate must be considered to
be just that; an estimate.

B.3.2 Yield & Net Die per Wafer

Although the fabrication of die on a Silicon wafer is a very tightly controlled
process you will find that not all die will work. The yield is the ratio of the
number of working die, Nnetdie, to Ndie.

One would like to know what can be expected for the yield prior to fabri-
cation of the wafer lots. Unfortunately, estimation of the yield is not straight-
forward. Early attempts at estimating yield assumed a uniform defect density
throughout the wafer[2]. Binomial distributions and other standard probability
density functions were often used. These all assumed that the defect density
was uniform[2].

People quickly found that the assumption of uniform defect densities was
not realistic making the estimates unusable[2]. Defect densities vary from wafer
to wafer. The defect densities tend to be greater near the edges of the wafer
and they also tend to occur in clusters. When one thinks of handling either
by humans or machines, this is not surprising. Murphy developed a general
relation for computing the wafer yield from a non-uniform defect density which
is given by[3]

Y =

∫

0

∞

e(−DoAdie)f(Do)dDo (B.7)

where Do is the defect density, f(Do) is a probability density for Do and Adie

is the area of the die.
If a triangularly approximation to the Gaussian distribution is used then the

yield is found by

Y =

[

1− e(−DoAdie)

DoAdie

]2

(B.8)

If instead f(Do) is a uniform probability density function then

Y =

[

1− e(−DoAdie)

2DoAdie

]

(B.9)

Since Murphy more complex probability distribution functions have been
investigated. This has culminated in the following yield expression[2, 4, 1]

Y =

[

1 +
DoAdie

α

]

−α

(B.10)

where the constant α is a number which is empirically determined. Typical
values are between 1 and 3. The value, α = 3 provides reasonable accuracy for
commercial CMOS fabrication today[1].

The product of defect density and die area, DoAdie, determines the yield. It
can be seen that the yield will dramatically decrease in proportion to increasing
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Figure B.1: Yield vs. DoAdie product using equation (B.10) for α=1, 2 & 3.

the die area for a given defect density. This is shown in figure B.1 for several
yield expressions. The relation between yield and die area predicted by the
expressions for yield is fundamentally true. You pay a big price in yield once
the die approaches a certain size. Thus, products which require a larger die can
be expected to be more expensive than smaller die.

One aspect not considered is the design itself. The design, transistor geome-
tries, %-area populated with transistors vs. passive components or blank space
will differ enough from one design to another and this could also have an impact
on the actual yield.

Using equations (B.6) and (B.10) we can find, the total die per wafer,
Ntotaldie, the yield, Y , and the net die or good die per wafer, Nnetdie =
Y XNtotaldie.

The estimate of the total and net die per wafer is given in Tables B.1 and B.2
for the a 2.2X2.2 mm die in the AMI 1.2µm and a 1.5x1.5mm die in the AMI
0.5µm process.

Fabrication Wafer Dimensions Area Die/Wafer
Process Diameter

[mm] [mm] [mm2] [Total]
1.20 µm 125 2.2 x 2.2 4.84 2,409
0.50 µm 200 1.5 x 1.5 2.25 13,666

Table B.1: Estimate of the total die per wafer.

Notice that the wafer diameter for the 0.5µm process (and smaller die size)
provides 5 times as many working die when compared to the 1.2µm process
despite a higher defect density (also note these defect densities are arbitrarily
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Fabrication Die/Wafer Defect Yield Net Die
Process Density Estimate Per Wafer

[Total] [/mm2] [%]
1.20 µm 2,409 0.01 95.31 2,296
0.50 µm 13,666 0.07 86.69 11,847

Table B.2: Estimate of the net die per wafer.

selected and are different from the vendor’s true defect density).
The best estimates of the yield are found by producing a large quantity of

prototypes; on the order of 500-1,000 die. The yield estimates in Table B.2 were
based on an estimated (in this case a fictitious) defect density. Although the
results obtained from equation (B.10) are reasonably accurate, measurement
of a larger quantity is more precise. It is possible that there are reliability
problems due to design practices, etc., which might need to be addressed in the
pre-production stage.

B.4 UPC Estimates Based on the Die Only

The UPC on the die level can be estimated for a wafer lot and these results can
be extrapolated to cover the desired number of die required. The number of die
per wafer are provided from the estimates given in Tables B.1 and B.2.

The cost per die must be computed by dividing the cost per wafer lot by
the number of die per wafer lot. The number of die per wafer lot is found by
multiplying the net die per wafer by the number of wafers per wafer lot. The
Mask set is a paid only for the production of the first wafer lot. The Mask set
is a one time fee and is thus considered to be part of the NRE. These results
are summarized in Table B.3.

Fabrication Wafer Lot Wafers Total Cost/Die Mask
Process Price Per Lot Die NRE

[$] [$] [$]
1.20 µm 31,000 5 11,480 2.70 52,000
0.50 µm 30,000 5 59,235 0.51 58,000

Table B.3: Estimated cost per die for ’tiny chips” in the 1.20 µm process and
the 0.50 µm process.

If one were to use only these values, e.g. the cost/die and the Mask NRE,
can be substituted UnitCost and FC, respectively in the expressions derived
in section 2. Notice that although there is a very low cost per die that there is
a relatively large investment required. The NRE here considers only the Mask
Set cost. This is probably a relatively small cost compared to other additional
costs such as prototype fabrication/testing, labor for engineers and technicians,
marketing, etc. The variable costs, that is the cost/die is not complete due to
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the variable cost and yield for the packaging. Although there are many details
to include, this still provides a simple example which illustrates how one goes
about finding such information. It also illustrates how many die one must sell
in order to recover only the mask costs, assuming a contribution of $0.20 per
die.

A good deal of the discussion in the two previous sections has been obtained
from R. Jaeger in reference[2]. One of the later chapters contains an excellent
discussion about the estimation of yield and other interesting information on
economics in this area.

B.5 BEP Analysis for 0.5 µm Die

Break-Even analysis provides reliable results only when all of the costs are con-
sidered and factored into the calculations. Tables B.4 and B.5 provide additional
information about how the non-recurring and per-unit costs are found. The la-
bor is a significant NRE cost driver; this is typical in most budgets. There
are other costs which fall under NRE such as board fabrication, prototype IC
fabrication, the mask set, the set up costs associated with automatic testing,
marketing and other smaller costs.

Cost Cost Num. of FTE Total
Line p.Week Weeks
Item [$] [$]

Labor (IC Engineer) 4,000 32 3 384,000
Labor (Tech. Lev 1) 1,500 24 2 72,000
Board Fabrication 28,000
IC Prototype Fab. 45,000

Mask Set 58,000
Testing 43,000

Marketing 125,000
Other 13,000

Total NRE 768,000

Table B.4: Total fixed/non-recurring engineering (NRE) cost.

The per unit cost breakdown, per-unit contribution and the BEPs are given
in Table B.5 as a function of yield over the wafer lot. Since the yield is a
statistical estimate it is a good practice to quantify the break even point as a
function of yield. We are assuming a selling price of $4.23 per chip (die). The
BEP is given in number of die and it is also given in wafer lots. It is useful to
express the BEP in terms of wafer lots because this is how the die are actually
purchased. Notice that if the yield is 70% the BEP is not reached until the
purchase of the 8th wafer lot while a yield of 95% reduces the BEP to the 6th

wafer lot purchase. The risk can also be quantified as a function of the die yield.
It is worth pointing out that there is also a yield for packaging because some
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working devices can actually be destroyed. This will further reduce the number
of working die and thus raise the BEP. It is also possible that some working die
are lost in the testing (depending upon the required production testing.

Yield Net Die Price Testing Pkg. Total Contr. BEP BEP
Est. p.Wafer p.Die p.Die p.Die p.Die p.Die Die Wafer
[%] Lot [$] [$] [$] [$] [$] [units] [Lot]
95 64,914 0.46 0.35 1.00 1.81 2.42 317,638 4.89
90 61,497 0.49 0.35 1.00 1.84 2.39 321,047 5.22
87 59,447 0.51 0.35 1.00 1.86 2.37 323,567 5.46
85 58,081 0.52 0.35 1.00 1.87 2.36 324,945 5.59
80 54,664 0.55 0.35 1.00 1.90 2.33 329,445 6.03
75 51,248 0.59 0.35 1.00 1.94 2.29 334,698 6.54
70 47,831 0.63 0.35 1.00 1.98 2.25 340,910 7.13

Table B.5: Other elements of variable cost per die.

One alternative to purchasing wafer lots is to purchase “real estate” on a
multi-project wafer. This typically works for part volumes of 1,000 and under.
The advantage of this approach is that NRE costs such as the mask set are
no longer necessary and the overall investment is reduced. The disadvantage
is that the per-unit cost is much higher. For the example we have presented
a reasonable low-quantity NRE estimate is approximately $565, 000 and a per-
unit cost for this die size is around $100.00 per die, totaling $101.35 when the
testing cost is added. This means that the selling price would need to be over
$1, 000.00 to bring the BEP below 500 die; it is desirable to break-even during
the first fab since the risks are higher (due to a much smaller market) using the
low-volume alternative.

B.6 Summary

The economics, the market and the profit margin, drive the decision to proceed
or cancel the development of a particular integrated circuit. It is obvious that
it is not prudent to develop a full custom integrated circuit for an application
which requires quantities of 1-10. In fact, the analysis presented overwhelmingly
favors high volume production; the larger the demand will be in wafer lots, the
better the return on the investment. The time to get a particular product into
the market will perturbate this result due to the short product life cycles(e.g.
the market price is not time-invariant). This means that most companies doing
high volume integrated circuit development will NOT deploy design engineers
to projects which are not guaranteed to lead to high volume sales. There is a
lower volume market which has evolved for quantities as low as 500-1,000, for
customers with applications which do not favor semi-custom or programmable
logic devices such as field programmable gate arrays (FPGA)s; however, the
return on the investment will be significantly lower. The market exists because



104 APPENDIX B. ELEMENTARY IC ECONOMICS

there is a sufficient number of customers who are willing to pay the NRE and
there are less expensive alternatives than deep sub-micron technology lines. Due
to the higher mask set costs, the most advanced integrated circuit technology,
90-130 nm, only makes economic sense for high volume products starting with
commercial memories, microprocessors and FPGAs. The low volume customers
will use 250 nm up to 2µm technologies, more mature but not obsolete, to offset
the cost of the most advanced devices.
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Appendix C

Projects

C.1 Estimating Die Sizes for Class Projects

You will perform a similar analysis for your project for the AMI 1.2 µm process.
Instead of the die dimensions listed here you will compute the actual dimensions
of your project, L and W .

The problem you will have is that the pad frame you are using is not properly
sized and is most likely too big. Typcially a project has a rectangular shape
which can be found (excluding the buffers for your project) using the magic
box command. You will then need to estimate what the rectangular dimensions
of your project would be if you were to make a custom pad frame and supply
buffers. This is illustrated in figure C.1
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Figure C.1: Estimate of project size.

You will then add a ∆L and a ∆W of 484 λ to account for the pads and
buffers in a final product. A spreadsheet in MS excel and Star Office have been
provided. This should dramatically reduce your work in estimating the cost of
your project.
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