## ELE 447/448 Digital Integrated Circuit Design I



## IBM 300 mm Wafer



## Former IBM 300 mm Foundry (GF)



## MPW Reticle



## Course/Lab Description

- Full Custom Analog Integrated Circuit Design
- Synthesis of Systems Based Upon Hand Crafted Transistors
- Students Learn to Use CAD Tools
- Project Based Course
- Course Sequence:

ELE 447/448 Digital IC Design I
ELE 537 Digital IC Design II
ELE 539 Analog IC Design
Additional Grad Courses in Microwave Design, etc.

## Use Pseudo nMOS \& CMOS Inverters to Introduce_Static_Logic_Eamilies



## We Will Need to Think About Device Physics/Models



## Topics

- Switch Models for MOS Transistor Analysis/Synthesis
- RC Models/Transient Response for Timing Analysis
- Understanding Device Physics $\rightarrow$ Designer's Point of View
- Device Technology Scaling and its Implications on a Designer
- Synthesis of Basic Gates to Building Blocks (e.g. Adders, Mux's, etc.) to Systems To an Entire IC
- Detailed Study/Analysis of High-Speed Cells (usually one type/family)
- Overview of Highlighted System/Project
- Logic Families: Static CMOS, Pseudo nMOS, Dynamic Logic
- Circuit Simulation Tools $\rightarrow$ HSPICE and Spectre
- Design Flow $\rightarrow$ Cadence/Mentor Graphics
- Layout
- Verification
- Manufacturability, Reliability, Yield


## Design Flow



## Simplified CMOS Cross Section



## Example: Nand Gate



## Virtuoso Layout of Nand2 Gate ...



Virtuoso Schematic \& Layout Example: Inverter


## 4 Transistor xnor Schematic \& Layout




## ADE Schematic Simulation



## ICs Testing




## Summary

- Project Based Course: Grading will be based upon a combination of Labs, Hwk, Exams and a Final Project
- Students are expected to understand basic circuit analysis, Emag and Electronics I
- A basic understanding of digital logic, e.g. gates, latches, flip-flops, counters, adders, etc. is also required

