ELE 447/448 Digital Integrated Circuit Design I

IBM 300 mm Wafer

Former IBM 300 mm Foundry (GF)

MPW Reticle

Course/Lab Description

- Full Custom Analog Integrated Circuit Design
- Synthesis of Systems Based Upon Hand Crafted Transistors
- Students Learn to Use CAD Tools
- Project Based Course
- Course Sequence:
 - ELE 447/448 Digital IC Design I
 - ELE 537 Digital IC Design II
 - ELE 539 Analog IC Design
 - Additional Grad Courses in Microwave Design, etc.

Use Pseudo nMOS & CMOS Inverters to Introduce Static Logic Families

We Will Need to Think About Device Physics/Models

www.shutterstock.com · 68271391

Topics

- Switch Models for MOS Transistor Analysis/Synthesis
- RC Models/Transient Response for Timing Analysis
- Understanding Device Physics → Designer's Point of View
- Device Technology Scaling and its Implications on a Designer
- Synthesis of Basic Gates to Building Blocks (e.g. Adders, Mux's, etc.) to Systems To an Entire IC
- Detailed Study/Analysis of High-Speed Cells (usually one type/family)
- Overview of Highlighted System/Project
- Logic Families: Static CMOS, Pseudo nMOS, Dynamic Logic
- Circuit Simulation Tools \rightarrow HSPICE and Spectre
- Design Flow → Cadence/Mentor Graphics
- Layout
- Verification
- Manufacturability, Reliability, Yield

Design Flow

Simplified CMOS Cross Section

Example: Nand Gate

Virtuoso Layout of Nand2 Gate ...

Virtuoso Schematic & Layout Example: Inverter

4 Transistor xnor Schematic & Layout

ADE Schematic Simulation

ICs Testing

Summary

- Project Based Course: Grading will be based upon a combination of Labs, Hwk, Exams and a Final Project

- Students are expected to understand basic circuit analysis, Emag and Electronics I

- A basic understanding of digital logic, e.g. gates, latches, flip-flops, counters, adders, etc. is also required