Home Work Assignment #1

Analog Integrated Circuit Design

University of Rhode Island, Kingston, RI 02881-0805, U.S.A.

Parameters, Equations:

Physical Constants:

$q = 1.6x10^{-19}C$	$\epsilon_o = 8.85 x 10^{-14} F/cm$
$\epsilon_{ox}=3.9\epsilon_o=3.45x10^{-13}F/cm$	$\epsilon_{Si} = 11.7 \epsilon_o = 1.04 x 10^{-12} F/cm$
$n_i = 1.45 x 10^{10} cm^{-3}$	$\phi_T = 26mV$

AMI C5 Process Parameters:

$CGDO = CGSO \approx .2fF$	$t_{ox} = 13.9nm$
nMOS	pMOS
$\mu_n = 453 cm^2 / [V - sec]$	$\mu_p = 201 cm^2 / [V - sec]$
$V_{Tn} = 0.669 \text{ V}$	$V_{Tp} = -0.915V$
$C_{j-sw} = 0.34 fF/\mu m$	$C_{j-sw} = 0.23 fF/\mu m$
$C_{j-A} = 0.41 f F / \mu m^2$	$C_{j-A} = 0.64 f F / \mu m^2$

- 1) Find the expressions to estimate the pole frequencies, f_{p1} & f_{p2} and the zero frequency, f_z , for the common source amplifier shown in figure 1. Include the voltage source resistance, R_S , in the expressions derived for each frequency as shown in figure 2.
 - a) Show that

$$\begin{aligned} \mathbf{f}_{p1} &\approx \left(\frac{1}{2\pi}\right) \frac{1}{g_{m1}C_{gd1}R_s(r_{o1}||R_{oP})} \\ \& \\ f_{p2} &\approx \left(\frac{1}{2\pi}\right) \frac{g_{m1}C_{gd1}}{C_{gd1}C_{gs1} + C_o\left(C_{gd1} + C_{gs1}\right)} \end{aligned}$$

- b) Find an expression for R_{op} .
- c) Assuming that we concern ourselves only with gate-source and gatedrain capacitances, which capacitor is C_o (in M2) ?

Figure 2. Small signal Equivalent Circuit.

- 2) Simulate the circuits in figures 1 and 2.
 - a) Determine I_D directly from the simulation for your values of W_n , $W_p \& L$.
 - b) Compute C_{ox} , k_n , β_n , k_p , & β_p using the values provided (and your device geometries).
 - c) Estimate the values of C_{gs1} , C_{gd1} & C_o . note: gate drain capacitance (for M1 in saturation) is computed from $C_{gd1} \approx C_{ox} W_n L_{diff} = CGDO \times W_n$ where CGDO, is spice parameter for the gate-drain overlap capacitance, defined as $CGDO = C_{ox} L_{diff}$ and L_{diff} is lateral diffusion (the amount of the implant that diffuses under the gate).
 - d) Plot the gain and phase of the amplifier using the ac analysis.
 - e) Draw the small signal equivalent circuit schematic (in the virtuoso schematic editor); use vccs and assign the g_{m1} value to it. Run the ac analysis for this circuit.
 - f) Compute f_{p1} ; compare the computed value with each of the ac simulation plots in ADE.

3) Find an approximate expression for f_{p1} for the cascode amplifier shown in figure 3.

Figure 3. Telescopic Cascode Amplifier with an active load.

- a) Draw the small signal equivalent circuit. (*Please note that the pMOS* cascode section can be replaced with a resistor, R_{oP}).
- b) Find an expression for the mid-frequency input impedance of the common gate transistor (M2); ignore the body effect (e.g. do not include g_{mb}).
- c) Find expressions for the mid-frequency amplifier gain, $\left(\frac{V_{o1}}{V_{in}}\right)$ & $\left(\frac{V_o}{V_{o1}}\right)$; use these expressions to find: $\left(\frac{V_o}{V_{in}}\right)$.
- d) Use Miller's Theorem to compare the dominant pole frequency, f_{p1} , of the telescopic cascode amplifier with that of the common source amplifier.