Home Work Assignment \#1

Analog Integrated Circuit Design
University of Rhode Island, Kingston, RI 02881-0805, U.S.A.

Parameters, Equations:

Physical Constants:

$$
\begin{array}{ll}
q=1.6 \times 10^{-19} \mathrm{C} & \epsilon_{o}=8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm} \\
\epsilon_{o x}=3.9 \epsilon_{o}=3.45 \times 10^{-13} \mathrm{~F} / \mathrm{cm} & \epsilon_{S i}=11.7 \epsilon_{o}=1.04 \times 10^{-12} \mathrm{~F} / \mathrm{cm} \\
n_{i}=1.45 \times 10^{10} \mathrm{~cm}^{-3} & \phi_{T}=26 \mathrm{mV}
\end{array}
$$

AMI C5 Process Parameters:
$C G D O=C G S O \approx .2 f F \quad t_{o x}=13.9 \mathrm{~nm}$
nMOS pMOS
$\mu_{n}=453 \mathrm{~cm}^{2} /[V-s e c] \quad \mu_{p}=201 \mathrm{~cm}^{2} /[V-s e c]$
$V_{T n}=0.669 \mathrm{~V} \quad V_{T p}=-0.915 \mathrm{~V}$
$C_{j-s w}=0.34 f F / \mu m \quad C_{j-s w}=0.23 \mathrm{fF} / \mu \mathrm{m}$
$C_{j-A}=0.41 \mathrm{fF} / \mu \mathrm{m}^{2} \quad C_{j-A}=0.64 \mathrm{fF} / \mu \mathrm{m}^{2}$

1) Find the expressions to estimate the pole frequencies, $f_{p 1} \& f_{p 2}$ and the zero frequency, f_{z}, for the common source amplifier shown in figure 1. Include the voltage source resistance, R_{S}, in the expressions derived for each frequency as shown in figure 2.
a) Show that

$$
\begin{aligned}
& \mathrm{f}_{p 1} \approx\left(\frac{1}{2 \pi}\right) \frac{1}{g_{m 1} C_{g d 1} R_{s}\left(r_{o 1} \| R_{o P}\right)} \\
& \& \\
& f_{p 2} \approx\left(\frac{1}{2 \pi}\right) \frac{g_{m 1} C_{g d 1}}{C_{g d 1} C_{g s 1}+C_{o}\left(C_{g d 1}+C_{g s 1}\right)}
\end{aligned}
$$

b) Find an expression for $R_{o p}$.
c) Assuming that we concern ourselves only with gate-source and gatedrain capacitances, which capacitor is C_{o} (in M2) ?

Figure 1. nMOS Common source with active pMOS load.

Figure 2. Small signal Equivalent Circuit.
2) Simulate the circuits in figures 1 and 2 .
a) Determine I_{D} directly from the simulation for your values of W_{n}, W_{p} \& L.
b) Compute $C_{o x}, k_{n}, \beta_{n}, k_{p}, \& \beta_{p}$ using the values provided (and your device geometries).
c) Estimate the values of $C_{g s 1}, C_{g d 1} \& C_{o}$.
note: gate drain capacitance (for M1 in saturation) is computed from $\mathrm{C}_{g d 1} \approx C_{o x} W_{n} L_{d i f f}=C G D O \times W_{n}$ where $C G D O$, is spice parameter for the gate-drain overlap capacitance, defined as $C G D O=C_{o x} L_{d i f f}$ and $L_{d i f f}$ is lateral diffusion (the amount of the implant that diffuses under the gate).
d) Plot the gain and phase of the amplifier using the ac analysis.
e) Draw the small signal equivalent circuit schematic (in the virtuoso schematic editor); use vccs and assign the $g_{m 1}$ value to it. Run the ac analysis for this circuit.
f) Compute $f_{p 1}$; compare the computed value with each of the ac simulation plots in ADE.
3) Find an approximate expression for $f_{p 1}$ for the cascode amplifier shown in figure 3.

Figure 3. Telescopic Cascode Amplifier with an active load.
a) Draw the small signal equivalent circuit. (Please note that the pMOS cascode section can be replaced with a resistor, $\left.R_{o P}\right)$.
b) Find an expression for the mid-frequency input impedance of the common gate transistor (M2); ignore the body effect (e.g. do not include $g_{m b}$).
c) Find expressions for the mid-frequency amplifier gain, $\left(\frac{V_{o 1}}{V_{i n}}\right) \&\left(\frac{V_{o}}{V_{o 1}}\right)$; use these expressions to find: $\left(\frac{V_{o}}{V_{i n}}\right)$.
d) Use Miller's Theorem to compare the dominant pole frequency, $f_{p 1}$, of the telescopic cascode amplifier with that of the common source amplifier.

