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ABSTRACT
A new subspace tracking algorithm which gives accurate
estimates of ther largest singular values and corresponding
left singular vectors of overlapping rectangular matrices is
presented. This algorithm has evolved from the Fast Ap-
proximate Subspace Tracking (FAST) algorithm by Real,
Tufts, and Cooley, but has significantly better accuracy and
computational efficiency.

When there are abrupt changes in data, or the data is
changing rapidly, a rectangular window can often give
better performance than an exponential window because it
can limit exactly how much older data is included. Some
methods for estimating the signal subspace dimension
require the singular values of the strong subspace. This
algorithm can update ther largest singular values and
corresponding left singular vectors inO(nr2), wheren is
the number of channels andr is the dimension of the strong
subspace that we are tracking. There are no assumptions
made about the strong subspace, but the accuracy of our
singular vector and singular value estimates is related to
the separation between the strong ”signal” subspace and
the weak ”noise” subspace, which is just the signal to noise
ratio.

In this paper we present, (a) why this algorithm works,
(b) why it is fast, and (c) how to use it to track a strong
subspace.

1. INTRODUCTION

A new subspace tracking algorithm which gives accurate
estimates of ther largest singular values and corresponding
left singular vectors of overlapping rectangular matrices
is presented. This algorithm, which we will callImproved
Fast Approximate Subspace Tracking(IFAST), has evolved
from the Fast Approximate Subspace Tracking (FAST)
algorithm by Real, Tufts, and Cooley [1], but has sig-
nificantly better accuracy and computational efficiency. A
detailed analytical analysis of the effect that advancing a
rectangular window by one column has on the singular
value decomposition (SVD) is presented, along with its

applicability to the IFAST algorithm. Additionally, we
present techniques for starting without an initial SVD, and
moving the overlapping matrices more than one column at
a time.

We have been motivated by problems of detection and
estimation in a non-stationary environment. Often the
“signal” subspace is really a rapidly varying subspace of
interference or clutter and we wish to track the subspace
in order to facilitate removal of the interference. Two
examples are (1) the rapidly time-and-space varying clut-
ter in multispectral images [2] and (2) Terrain Scattered
Interference in airborne radar [3].

We start with ann×c matrix M , whose columns consist
of sequential complex-valued samples in time and/or space.
For example, each column may be the output of an array
of sensors at a given time, or a new column in a Hankel
matrix created from a single sensor.M is of the form

M = S + N (1)

whereS is a rankr signal matrix andN is a full rank noise
matrix. Our goal is to efficiently and accurately determine
the signal subspace dimension,r, along with ther largest
singular values and corresponding left singular vectors of
M . The problem of determiningr when we have the
singular values ofM has been addressed in [4] and [5],
and generalized in [6].

2. THE IFAST ALGORITHM

In this section we describe the improved fast adaptive
subspace tracking (IFAST) algorithm. Given a sequence
of lengthn column vectors, we can define the twon × c
matrices for timet − 1 and t as

M =
[

xt−c xt−c+1 · · · xt−1

]
, (2)

M̃ =
[

xt−c+1 xt−c+2 · · · xt

]
. (3)

Assuming we have ther largest singular values and
corresponding left singular vectors ofM , which we will
call Σ′ and U ′, we would like to determine ther largest
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singular values and corresponding left singular vectors of
M̃ without performing a full SVD onM̃ .

2.1. The Steps of the Algorithm

The steps of the algorithm are given in table I. The
order of evaluation is important in efficiently performing
the calculations (for example step one should be evaluated
asxt − U ′(U ′xt)).

The first two steps use a Gram-Schmidt method to create
the matrixQ ∈ Cn×2, which is an orthogonal and normal
basis for the subspace defined by the vectors that we are
adding and discarding,xt andxt−c, that is orthogonal to
U ′.

The third step creates the matrix̃F ∈ Cr+2×r+2, which
is equivalent to

F̃ = [ U ′ Q ]HM̃M̃H [ U ′ Q ]. (4)

The reasonF̃ is calculated as in step three of table I,
is because the matrix product in (4) is anO(rnc + rc2)
computation, and would dominate the algorithm for small
r, while F̃c from step 3 is a diagonal matrix plus two rank
one matrices.

Taking the SVD ofF̃ is equivalent to taking the SVD
of the rankr + 2 matrix

M̃ ′ = [ U ′ Q ][ U ′ Q ]HM̃, (5)

thus steps four and five give us the true singular values
and singular vectors of̃M ′.

2.2. Why IFAST Works

The details of why IFAST is accurate are presented later,
but a general explanation is given here. Since the columns
of U ′ are ther largest singular vectors forM , and M
has all but one column in common with̃M , thenU ′ must
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Fig. 1. Computation of the IFAST algorithm forn = c = 64 for
different subspace dimensions vs. a full SVD of̃M and the original
FAST algorithm.

be a pretty good approximation tõU ′ to begin with. The
construction ofQ ensures that the part of the two vectors
that differ betweenM andM̃ , and is not included inU ′,
is included inF̃ .

2.3. Computation and Accuracy

Figure 1 shows the approximate FLOPS required for a
single iteration, whenM is complex, andn = c = 64 for
both the full SVD, an IFAST update, and an original FAST
update. The dominant steps, steps three, four and five, are
also shown.

Figure 2 illustrates the accuracy of the IFAST algorithm.
The signal subspace consists of two complex chirps, and
one complex sinusoid which starts at time 100, and ends
at time 350. The data is generated from a single sensor,
then made into32 × 32 hankel matrices. The noise is
uncorrelated complex Gaussian, with a variance of 1.5.
The signal is the same as that used in the example from
[1], with a much lower SNR. The top three plots show
10 log10((σ̃2

i − σ̃′2i )/σ̃2
i ), for i = 1, 2, 3, where σ̃i is the

true ith singular value ofM̃ , andσ̃′i is the estimate of the
ith singular value using the specified algorithm. The rank
is tracked using the method from [6]. The blue and green
line use the estimate forU ′ from the previous iteration,
while the red line uses the trueU ′ generated by taking a
full SVD of M .

3. SLIDING A RECTANGULAR WINDOW

In this section we will take a look at exactly what
happens to the singular values and left singular vectors
when we advance a rectangular window by one snapshot.

3.1. The Full Subspace

When we have a lengthc rectangular window of our
data matrix X ∈ Cn×L, and advance the window by
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Fig. 2. An example to to illustrate the accuracy of IFAST.

one snapshot, the new matrix will havec − 1 columns
in common with the previous matrix. We can writẽM as

M̃ =
(
M − xt−ce

T
1

)
P + xte

T
c , (6)

where e1 and ec are the1st andcth length c canonical
vectors, andP is a c × c identity matrix with the first
column moved to the far right, and all other columns
shifted one to the left. Note that theith lengthc canonical
vector, ei, is the ith column of ac × c identity matrix.
Multiplying M̃ as defined in (6) by its conjugate transpose,
we get

M̃M̃H = MMH − xt−cx
H
t−c + xtx

H
t , (7)

which makes it clear that advancing the rectangular win-
dow by one snapshot, is a rank-two modification to the
underlying symmetric eigenproblem.

If we write the singular value decomposition ofM as
M = UΣV H , and define

a = UHxt−c, b = UHxt, (8)

then multiply (7) by the left singular vectors ofM from

both the left and right, we get

G̃ = UHM̃M̃HU = Σ2 − aaH + bbH , (9)

where theΣ2 term comes fromUHMMHU . Note that
(9) is a diagonal matrix plus two rank one matrices. If we
write the SVD ofG̃ asUGΛGUH

G , then we can write the
singular values and left singular vectors of̃M as

Σ̃ =
√

ΛG, Ũ = UUG. (10)

What this means, is that we can analyze what happens to
the SVD of M when we createM̃ by analyzing the the
eigendecomposition of̃G.

The eigenvalues ofG̃ are the roots of the rank-two
secular equation

w(λ) =

1−
n∑

j=1

|aj |2

σ2
j − λ

1+
n∑

j=1

|bj |2

σ2
j − λ

+

∣∣∣∣∣∣
n∑

j=1

a∗jbj

σ2
j − λ

∣∣∣∣∣∣
2

.

(11)
The blue line in figure (3) shows an example ofw(λ).
Note that it is concealed by the red line for much of the
plot. The singular vectors can be determined by a simple
matrix product, which is shown in [7].
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3.2. The Principal Subspace

If we separateM into a strongr dimensional principal
subspace, and an orthogonal(c − r) dimensional weak
subspace, we can write the SVD ofM as

M =
[

U ′ U⊥ ] [ Σ′ 0
0 Σ⊥

] [
V ′ V ⊥ ]H

. (12)

whereΣ′ ∈ Rr×r contains ther largest singular values of
M , andU ′ ∈ Cn×r contains the firstr columns ofU .

If we define the reduced rank version ofG̃ to be

G̃′ = U ′HM̃M̃HU ′ = Σ′2 − a′a′H + b′b′H , (13)

wherea′ and b′ are just the firstr elements ofa and b
respectively, then the eigenvalues ofG̃′ are the roots of

w′(λ) =

1−
r∑

j=1

|aj |2

σ2
j − λ

1+
r∑

j=1

|bj |2

σ2
j − λ

+

∣∣∣∣∣∣
r∑

j=1

a∗j bj

σ2
j − λ

∣∣∣∣∣∣
2

.

(14)
Equation (14) differs from (11) only by the upper limit
of the summation. The green line in figure (3) shows an
example ofw′(λ).

3.3. The IFAST Approximation

Since the vectorsq1 and q2 from steps one and two
of table I are only intended to determine an orthogonal
and normal basis for the subspace defined by the vectors

that we are adding and discarding,xt and xt−c, that is
orthogonal toU ′, we can rotateQ by any unitary matrix,
and the algorithm will be unchanged. If we rotateQ, such
that the2 × 2 matrix

Σ̂ = QHMMHQ (15)

is diagonal, then the lower portion of̃F from step three,
QHM̃M̃HQ, will be a diagonal matrix plus two rank one
matrices, which although trivial for a2×2 matrix, will be
necessary later.

If we assume thatU ′ consists of ther true left singular
vectors ofM (as opposed to approximations), we can write
U ′HM̃M̃HQ = Σ′2U ′HQ, where whereU ′ and Σ′ are
from (12). The construction ofQ ensures thatU ′HQ equals
zero, therefore we can write the whole ofF̃ , and not just
F̃c, as a diagonal matrix plus two rank one matrices, whose
secular equation is

w′′(λ) =

1 −
r∑

j=1

|aj |2

σ2
j − λ

−
2∑

j=1

∣∣qH
j xt−c

∣∣2
σ̂j − λ


·
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σ2
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+
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∣∣qH
j xt

∣∣2
σ̂j − λ


+

∣∣∣∣∣∣
r∑

j=1

a∗jbj

σ2
j − λ

+
2∑

j=1

qH
j xtx

H
t−cqj

σ̂j − λ

∣∣∣∣∣∣
2

, (16)



whereσ̂j comes fromΣ̂ in (15). The red line in figure (3)
shows an example ofw′′(λ).

When we perform binomial expansions of the two terms
added to each summation by IFAST, we find that the first
two terms of this binomial expansion are the same as the
first two terms of the binomial expansion of then−r terms
from w(λ) that are missing inw′(λ). We will show this
for just one part ofw′′(λ), but the procedure to show it
for the other two parts is similar.

3.4. Binomial Expansions

For λ greater thanσr+1 and σ̂1, we can use a binomial
expansion to write

2∑
j=1

∣∣qH
j xt

∣∣2
σ̂j − λ

= −
2∑

j=1

∣∣qH
j xt

∣∣2
λ

∞∑
i=0

(
σ̂j

λ

)i

(17)

and

n∑
j=r+1

|bj |2

σ2
j − λ

= −
n∑

j=r+1

|bj |2

λ

∞∑
i=0

(
σ2

j

λ

)i

. (18)

Removing the first two terms from each of the binomial
expansions, we get

−
2∑

j=1

∣∣qH
j xt

∣∣2
λ

(
1 +

σ̂j

λ
+

∞∑
i=0

(
σ̂j

λ

)i
)

(19)

and

−
n∑

j=r+1

|bj |2

λ

1 +
σ2

j

λ
+

∞∑
i=2

(
σ2

j

λ

)i
 . (20)

Addressing the first order term from the binomial ex-
pansion in (19), we get

2∑
j=1

∣∣qH
j xt

∣∣2 =
2∑

j=1

qH
j xtx

H
t qj (21)

which we can write in matrix form asxH
t QQHxt. Because

of the wayQ was constructed,U⊥U⊥Hxt equalsQQHxt,
therefore (21) equalsxH

t U⊥U⊥Hxt, which is the first
order term from (20).

The second order term from the binomial expansion in
(20), can be written as

n∑
j=r+1

|bj |2 σ2
j =

n∑
j=r+1

uH
j xtx

H
t ujσ

2
j , (22)

which we can write in matrix form asxH
t U⊥Σ⊥2U⊥Hxt.

We can insert the identity matrixU⊥HU⊥ to get

xH
t U⊥U⊥HU⊥Σ⊥2U⊥HU⊥U⊥Hxt. (23)

SubstitutingQQHxt = U⊥U⊥Hxt, we get

xH
t QQHU⊥Σ⊥2U⊥HQQHxt, (24)

which is equal to

xH
t QQHUΣ2UHQQHxt (25)

becauseQ is orthogonal to the columns ofU ′. This can
be written as

xH
t QQHMMHQQHxt. (26)

Finally, sinceQHMMHQ = Σ̂, we get

xH
t QΣ̂QHxt, (27)

which is the same as the second order term from (19).
Combining all of this, the difference of (18) and (17)

can be written as

e′′b =
2∑

j=1

∣∣qH
j xt

∣∣2
λ

∞∑
i=2

(
σ̂j

λ

)i

−
n∑

j=r+1

|bj |2

λ

∞∑
i=2

(
σ2

j

λ

)i

,

(28)
which can be written as

e′′b =
∞∑

i=2

xH
t Q

(
Σ̂i − QHU⊥Σ⊥2iU⊥HQ

λi+1

)
QHxt,

(29)
or in terms ofM ,

e′′b =
∞∑

i=2

xH
t Q

(
(QHMMHQ)i − QH(MMH)iQ

λi+1

)
QHxt.

(30)
The other difference terms can be written similarly as

e′′a =
∞∑

i=2

xH
t−cQ

(
(QHMMHQ)i − QH(MMH)iQ

λi+1

)
QHxt−c.

(31)
and

e′′ab =
∞∑

i=2

xH
t−cQ

(
(QHMMHQ)i − QH(MMH)iQ

λi+1

)
QHxt.

(32)
Figure 4 shows the difference termwa(λ) − w′′a(λ),

which is e′′a, along with w′′a(λ) − wa,com(λ), where
wa,com(λ) is the part ofw′′a(λ) andwa(λ) that is common
to both of them.

4. MODIFICATIONS TO ALGORITHM

It is possible to make a simple modification to the
algorithm so that an initial SVD is not required to get our
first Ũ ′ and Σ̃′. To do this we start with a single column,
x0, thus c = 1. Its singular value is just its two norm,
Σ̃′ = ‖x0‖, and its singular vector is just itself divided by
its singular value,Ũ ′ = x0/Σ̃′. Each time we get a new
column, we incrementc until M reaches the dimensions
we want. WhileM is growing, we do not need to calculate
step two from the IFAST algorithm, thereforeQ will only
be ann× 1 matrix, andF̃ will be a r + 1× r + 1 matrix.

When more than one new column is added and removed
each iteration, it is possible to make a simple modification
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to the algorithm to account for this. Basically, the matrix
Q will have one column for each column added tõM and
one column for each column that is removed, thus ifk new
columns are available, and the number of columns inM is
kept the same, the matrixQ will have dimensionsn× 2k
and the matrixF will have dimensionsr + 2k × r + 2k.
Each new column inQ must be normal, and will contain
the portion of the correspondingxi that is orthogonal to
U ′ as well as the previously calculated columns ofQ.

When the matrixM has Hankel structure, the calcula-
tions required to constructF can be further reduced using
the fast Fourier transform. This has been present for the
original version of FAST in [8], and can easily be applied
to the new version of this paper.

5. ADDITIONAL COMMENTS

It should be noted that the IFAST algorithm works for
both complex and real data, while the rank tracking method
from [6] is designed for complex data only. The IFAST
algorithm is designed to update the singular values and
singular vectors ofM , thus it is independent of the rank
tracking algorithm, therefore any rank tracking method can
be used.

When there is a computational limit on the dimensions
of F̃ for the small SVD in step 4 from table I, we can
still calculate the number of singular values and singular
vectors that we are capable of, and they will represent the
r largest singular values ofM .
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