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Abstract

The standard method of spectral inference assumes a Gaussian model for the data. A less

known but alternative spectral representation can be based on a nonhomogeneous Poisson pro-

cess in frequency. This leads to a new likelihood function that can be used for spectral inference.

In particular, the very important problems of spectral estimation and spectral classification can

be approached with this new likelihood function. If an exponential model is assumed, then the

parameter estimation reduces to a simple convex optimization for the spectral estimation prob-

lem. For the classification problem with known spectra the classification performance based on

the Poisson likelihood function is shown by simulation to outperform the Gaussian classifier in

terms of robustness. Finally, a perfect analogy between the Poisson likelihood measure and the

Kullback-Leibler measure for probability density functions is established and discussed.

1 Introduction

The spectral representation for a wide sense stationary (WSS) random process is of utmost impor-

tance in modern signal processing theory and practice [1]. It forms the basis for the the science

(and sometimes “art”) of spectral estimation [7]. This representation relies on summing together a

set of sinusoids of fixed frequencies with random amplitudes and random phases. Using a complex
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representation, one can view the complex amplitude in the context of a random spectral measure,

which is uncorrelated over disjoint frequency sets. Although not well known, one could also model

the frequencies as random point events distributed according to a nonhomogeneous Poisson process.

This leads to a different spectral representation, and consequently to a different likelihood function

for spectral inference. A similar representation had been proposed earlier that uses two independent

Poisson point processes [6]. Its intent was to allow Gaussian random processes to be easily simu-

lated on a computer. The representation presented herein is simpler in that it uses only a single

Poisson process and hence is more intuitive. It should also be mentioned that our representation

is more flexible in that not only can it be used to generate a random process with a given power

spectral density (PSD) but also with an arbitrary first-order probability density function (PDF), if

the PDF is infinitely divisible [11].

Once this spectral representation is adopted, one can derive its likelihood function [18]. With

some modifications necessary to account for the fact that the random point frequencies are not

actually observed in most practical situations, a realizable approximation to the likelihood function

is proposed. One situation for which the frequencies are available is in the modeling of aural neural

responses, in which the frequencies correspond to neural impulses along the auditory nerve [17].

We will term the approximate likelihood function to be derived as the realizable Poisson likelihood

function (RPLF).

Using the RPLF we propose two new approaches to the important problem of spectral inference.

The first is a model-based spectral estimate. As will be shown, the RBLF naturally suggests that

for mathematical tractability and statistical efficiency the spectrum be modeled as the exponential

power spectral density (EPSD), first proposed by Bloomfield [2]. The use of the RPLF leads to a

simple convex maximization to estimate the model parameters that is easily carried out numerically.

In contrast, Bloomfield’s use of the asymptotic Gaussian likelihood function leads to an intractable

set of maximum likelihood equations to solve. This occurs even though Bloomfield uses the well-

known Whittle asymptotic Gaussian approximation. The second application of the RPLF is in

discerning between random processes with different PSDs. It is shown via computer simulation

that the use of the Gaussian likelihood function is inferior to the RPLF in terms of robustness. In

particular, when the data set is heaving perturbed by noise, the classification performance of the

Gaussian approach degrades rapidly, but not so for the RPLF.

Lastly, it is shown that maximization of the RPLF is equivalent to minimizing the KL measure

between PDFs. Thus, there is a perfect analogy between PSDs and PDFs, allowing one to use all

the theoretical machinery developed for PDF estimation to be applied to spectral inference. This

analogy underlies the use of the “exponential PDF family” as a model for the PSD, i.e, Bloomfield’s

spectral estimator. It is actually a remarkable correspondence, obvious in hindsight, since both

PSDs and PDFs are nonnegative functions, with the only difference being a normalization so that

the PDF integrates to one. For a PSD the total power can be anything but in practice since the
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overall power is usually unknown anyway, it makes little difference if we assume an overall power

of one. If not, we can always scale the estimated PSD by an estimate of the overall power, i.e., the

variance.

The content of the paper is as follows. In Section 2 we introduce the Poisson spectral repre-

sentation with its properties summarized in Section 3. Section 4 indicates how our use of a similar

representation is actually a special case. The derivation of the Poisson likelihood function and its

realizable approximation is discussed in Section 5, while Sections 6 and 7 give examples of its use-

fullness. A key relationship with the Kullback-Leibler distance is described in Section 7. Finally,

Section 8 summarizes the results and gives extensions.

2 The Poisson Spectral Representation

The background for this section can be found in [12]. For a discrete-time wide sense stationary

(WSS) random process it is well known that the process has the spectral representation [1]

X[n] =

∫ 1
2

− 1
2

exp(j2πfn)X(df) (1)

where X(df) is the complex spectral measure and can be viewed as a complex random variable that

gives the amplitude and phase of the sinusoid whose frequency is at f . The random variable has

a zero mean and is uncorrelated for different frequency sinusoids. In our Poisson representation it

will be necessary to assume that not only are the sinusoidal complex amplitudes uncorrelated but

that they are also independent. Of course if the random process were Gaussian, the representation

of (1) would also imply independence. The power at frequency f is given by E[|X(df)|2] and
hence the PSD is just PX(f) = E[|X(df)|2]/df . In the proposed Poisson Spectral Representation

(PSR) we simplify the discussion by considering only a real random process and thus, use the real

representation

X[n] =
1√
λ0/2

N∑
k=1

Ak cos(2πFkn+Φk) −∞ < n <∞ (2)

where {A1, A2, . . . , AN} are independent and identically distributed (IID) positive amplitude ran-

dom variables, {Φ1,Φ2, . . . ,ΦN} are IID phase random variables uniformly distributed on [0, 2π),

and with the amplitudes independent of the phases. The number of sinusoids N is a Poisson ran-

dom variable with mean λ0, and the frequencies {F1, F2, . . . , FN} are the point events in frequency

of a nonhomogeneous Poisson random process on the interval 0 ≤ f ≤ 1/2. The Poisson random

process, denoted by Π, is independent of the amplitudes and phases. In contrast to the usual

spectral representation of (1) where the frequencies are fixed, and usually chosen in the limit as

uniformly spaced in frequency, in the PSR the frequencies are randomly distributed throughout the

frequency interval as a nonhomogeneous Poisson process. This representation then gives rise to a

given PSD via a nonuniform distribution of sinusoidal frequency components.
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The representation of (2) in which we sum a function evaluated at the points of a Poisson

process and for which the function also depends upon the outcomes of other random variables is

called a marked Poisson process. It can alternatively be written as

X[n] =
N∑
k=1

gn(Fk, (Ak,Φk)) (3)

where

gn(F, (A,Φ)) =
1√
λ0/2

A cos(2πFn +Φ).

In this case, the random variable associated with the kth frequency event of the Poisson process is

(Ak,Φk) and is called the “mark”. It is independent of the marks at the other frequencies and also

of the other frequency events. As such, it produces a multidimensional Poisson process denoted by

Π∗ with events as depicted in Figure 1.

x xx xx
0 f 1/2

0

∞

0

2πA× B

a

φ

S ×M

Figure 1: Illustration of an outcome of a marked Poisson process Π∗ (shown as solid dots) with

event F (shown as x’s) and mark (A,Φ). Note that the number of events in A × B is two for the

pictured realization and the average number of events is the mean measure µ(A× B).

The space in which the marked events occur will be denoted by S × M. Here S denotes the

frequency interval 0 ≤ f ≤ 1/2, where the frequency resides and M denotes the marked space

[0,∞)× [0, 2π), where the amplitude and phase reside. The number of events in a subset V of this

space is given by N(V ), which is a Poisson random variable with mean measure E[N(V )] = µ(V ).

Also, the number of events in disjoint subsets are independent of each order, according to the

Poisson assumption. Since a projection of a marked Poisson process is also a Poisson process, the
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frequencies form a nonhomogenous Poisson process with mean measure denoted by

µ([f1, f2]×M) = E[N([f1, f2]×M)] =

∫ f2

f1

λ(f)df

where we have assumed that all the measures are absolutely continuous. We interpret this assump-

tion as saying that the Poisson process in frequency is nonhomogeneous and has an intensity of

λ(f). Thus the frequency realization is such that there are more events in frequency intervals where

λ(f) is large, i.e, where the “arrival rate” or intensity is large. Overall, it can be shown that the

mean measure for the Poisson process Π∗ for an arbitrary volume A×B, where A ∈ S and B ∈ M
is

µ(A× B) =
∫
A×B

λ(f)pA(a)pΦ(φ)dφ da df (4)

where pA(a) and pΦ(φ) are the PDFs of the amplitude and phase, respectively. We normalize the

intensity by letting

λ(f) = λ0p(f)

where
∫ 1/2
0 p(f)df = 1 so that p(f) can be interpreted as a PDF in frequency. With this normal-

ization the expected number of events events in S ×M is

µ(S ×M) =

∫ 1/2

0

∫ ∞

0

∫ 2π

0
pΦ(φ)pA(a)λ0p(f)dφ da df = λ0.

With these assumptions the PSR can be written as

X[n] =

∫
S×M

a√
λ0/2

cos(2πfn+ φ)N(df × (da, dφ)) (5)

where N(A × B) is the number of events occuring in the “rectangle” A × B. This is similar to

(1) except for the mark (A,Φ) and the property that the random counting measure, i.e., random

variable N , is Poisson and is independent, and not just uncorrelated, in nonoverlapping sets in

S ×M. We can alternatively think of the random counting measure as

N(df × (da, dφ)) =

N(S×M)∑
k=1

δ(f − fk, a− ak, φ− φk)df da dφ

where δ is a three-dimensional Dirac delta function. Inserting this into (5) will produce (2). Note

that ifN(S×M) = 0 then we defineX[n] as zero, although this will be a low probability occurrence,

especially for large λ0. The assumption of large λ0 is desirable in that the X[n] process can be

shown to be ergodic in the autocorrelation sequence only as λ0 → ∞, and is necessary for a practical

representation. We next state the properties of (2) or equivalently (5) with the derivations to be

found in the Appendices.
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3 Properties of the Representation

The X[n] random process as defined by (2) or equivalently by (5) with its accompanying assump-

tions can be shown to possess the following properties:

1. The process is zero mean, i.e., E[X[n]] = 0 for −∞ < n < ∞. This is due to the assumption

that the phase is uniformly distributed.

2. The process possesses an autocorrelation sequence, which together with the first property, shows

that it is WSS.

3. The PSD is given by

PX(f) =
E[A2]

2
p(|f |) − 1/2 ≤ f ≤ 1/2. (6)

Thus, the PSD is specified by choosing the intensity of the nonhomogeneous Poisson process

in frequency since λ(f) = λ0p(f) on the interval 0 ≤ f ≤ 1/2. The total power is seen to

be E[X2[n]] =
∫ 1

2

− 1
2

PX(f)df = E[A2], and is independent of λ0 (the reason for the chosen

normalization in (2) of
√
λ0/2).

4. The process is ergodic in the mean. This is due to the assumption of an absolutely continuous

spectral measure since this implies an absence of a delta function in the PSD at f = 0 [1].

5. The process is ergodic in the autocorrelation sequence as λ0 → ∞. This is reasonable in that as

the intensity of the Poisson process in frequency increases, more frequency events occur and

hence a more accurate temporal modeling of the process is obtained.

6. As λ0 → ∞, the first-order PDF of X[n] becomes Gaussian with zero mean and variance E[A2],

and this holds independently of the PDF of A (as long as the PDF does not depend on

the outcome of N , as we have assumed. See [11] for the utility of allowing this dependence).

Furthermore, as λ0 → ∞, the process becomes a Gaussian random process in a similar fashion

to the well known convergence property of a filtered Poisson process as the intensity becomes

large [16].

4 Rapprochement with Previous Results

The previous representation used in [11] was

X[n] =
1√
M/2

M∑
i=1

Ai cos(2πFin+Φi)

where the random variables (Ai,Φi) were IID with the amplitudes and phases independent of each

other, and the phases were uniformly distributed. It was assumed that M is a given constant.
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These are nearly the same assumptions as for (2). The difference lies with the assumption on the

frequency random variables. We have assumed these were IID with PDF pF (f) on the interval

[0, 1/2] and independent of the amplitude and phase random variables. In the PSR we consider the

frequencies as random events distributed according to a nonhomogeneous Poisson random process

with intensity λ(f) = λ0p(f). However, if in the PSR model we fix the number of events N as the

constant M , or equivalently condition on the number of frequency events in [0, 1/2], then the PSR

reduces to our previous model. This is a well known result that a nonhomogeneous Poisson process

with intensity λ(f), conditioned on the number of events, has the same distribution as the order

statistics of M IID random variables with the PDF [18]

pF (f) =
λ(f)∫ 1/2

0 λ(f)df
0 ≤ f ≤ 1/2.

But for the PSR λ(f) = λ0p(f) so that

pF (f) =
λ0p(f)∫ 1/2

0 λ0p(f)df
= p(f)

since
∫ 1/2
0 p(f)df = 1. Hence, if we condition on the number of frequency events in [0, 1/2], then

X[n] has the properties listed in [11].

5 The Realizable Poisson Likelihood Function

Since the PSD is related to the intensity in the PSR as

λ(f) = λ0p(f) =
2λ0PX(f)

E[A2]
0 ≤ f ≤ 1/2 (7)

we can use the intensity for spectral inference. To simplify the discussion we let E[A2] = 1, since

as already stated we are only interested in the normalized PSD. As a result, from (6) we have

that
∫ 1

2

− 1
2

PX(f)df = 1. In summary, we have that λ(f) = 2λ0PX(f) for 0 ≤ f ≤ 1/2, where∫ 1/2
0 λ(f)df = λ0. Since the marks of the Poisson process are independent of the frequency events

and since PX(f) only depends on the intensity, we can base any decision on just the intensity

realization, i.e., the observed number of frequency events per unit cycles/sample. It can be shown

that the part of the log-likelihood that depends on the intensity is given by [18]

l = −
∫ 1/2

0
λ(f)df +

∫ 1/2

0
lnλ(f)N(df) (8)

Next we assume that the frequency events are not observable but only x[n] is observed. Some

applications for which the frequency events can be observed are in neural auditory coding [17]. For

the unobservable frequency case we proceed by noting that

E[N(df)] = λ(f)df = 2λ0PX(f)df ≈ 2λ0Ī(f)df
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where Ī(f) is the normalized periodogram, which is given by

Ī(f) =

1
M

∣∣∣∑M−1
m=0 x[m] exp(−j2πfm)

∣∣∣2∫ 1
2

− 1
2

I(f)df

and I(f) is the unnormalized periodogram

I(f) =
1

M

∣∣∣∣∣
M−1∑
m=0

x[m] exp(−j2πfm)

∣∣∣∣∣
2

.

Note that
∫ 1

2

− 1
2

Ī(f)df = 1, in accordance with
∫ 1

2

− 1
2

PX(f)df = 1 and Ī(f) being an estimate of

PX(f). The data set x[m] for m = 0, 1, . . . ,M − 1 is assumed to have been observed. We now have

l′ ≈ −
∫ 1/2

0
λ(f)df +

∫ 1/2

0
ln(λ(f))2λ0Ī(f)df

= −λ0 + 2λ0

∫ 1/2

0
Ī(f) ln(2λ0PX(f))df

= −λ0 + 2λ0

∫ 1/2

0
Ī(f) ln(2λ0)df + 2λ0

∫ 1/2

0
Ī(f) lnPX(f)df

= −λ0 + λ0 ln(2λ0) + 2λ0

∫ 1/2

0
Ī(f) lnPX(f)df.

Finally, ignoring the terms that do not depend on the PSD and the arbitrary scaling via λ0, we

have

lR =

∫ 1
2

− 1
2

Ī(f) lnPX(f)df (9)

as our RPLF. We have now included the negative frequency components of the PSD for convenience.
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A Derivation of Mean and Covariance

Using the standard notation of Kingman [12], we let the Poisson process be denoted by Π and the

marked Poisson process by Π∗. The event is denoted by the vector in R3 as x. Then we wish to

determine the mean and covariance of

Zm =
∑
X∈Π∗

gm(X) (10)

It is shown in Appendix C that the first four moments are given as

E[Zm] =

∫
S×M

gm(x)µ(dx) (11)

E[ZmZn] =

∫
S×M

gm(x)gn(x)µ(dx) (12)

By letting x = [f aφ]T and

gm(x) =
a√
λ0/2

cos(2πfm+ φ)

and also

µ(dx) = λ0p(f)pA(a)pΦ(φ)dφ da df

we can find the moments of X[n].

The mean is derived first by using (11).

E[X[n]] =

∫ 1/2

0

∫ ∞

0

∫ 2π

0

a√
λ0/2

cos(2πfn+ φ)λ0p(f)pA(a)pΦ(φ)dφ da df = 0

due to the integration over φ.

Next the autocorrelation sequence and the PSD are found.

E[X[m]X[n]] =

∫ 1/2

0

∫ ∞

0

∫ 2π

0

a2

λ0/2
cos(2πfm+ φ) cos(2πfn+ φ)λ0p(f)pA(a)pΦ(φ)dφ da df

= 2E[A2]

∫ 1/2

0

∫ 2π

0

1

2
cos[2πf(m− n)] +

1

2
cos[2πf(m+ n) + 2φ]

1

2π
dφ p(f)df

= 2E[A2]

∫ 1/2

0

1

2
cos[2πf(m− n)]p(f)df

= rX [m− n]

so that the autocorrelation sequence is

rX [k] =

∫ 1
2

− 1
2

E[A2]p(|f |)
2

cos(2πfk)df

and the PSD is seen to be

PX(f) =
E[A2]p(|f |)

2
− 1/2 ≤ f ≤ 1/2.
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B Derivation of Ergodicity of Sample Autocorrelation

From [5] there are two conditions that are necessary and sufficient for ergodicity. They are

1. The fourth moment E[X[n0]X[k + n0]X[j + n0]X[j + k + n0]] should not depend on n0, which

is a form of stationarity for this moment.

2. If the sample autocorrelation is given by

r̂X [k] =
1

M + 1

M+1∑
j=0

X[j]X[j + k]

then we require

lim
M→∞

1

M + 1

M+1∑
j=0

E[X[0]]E[X[k]]E[X[j]]E[X[j + k]] = r2X [k]

and is equivalent to requiring the variance of r̂X [k] to go to zero as the data record length M

goes to ∞. We first verify the stationarity of the fourth-order moment.

To do so we let

gn(x) = X[n] =
a√
λ0/2

cos(2πfn+ φ)

and use the fourth-order moment results derived in Appendix C. We have

E[X[n0]X[k + n0]X[j + n0]X[j + k + n0]] =

∫
S×M

gn0(x)gk+n0(x)gj+n0(x)gj+k+n0(x)µ(dx)

+

∫
S×M

gn0(x)gk+n0(x)µ(dx)

∫
S×M

gj+n0(x)gj+k+n0(x)µ(dx)

+

∫
S×M

gn0(x)gj+n0(x)µ(dx)

∫
S×M

gk+n0(x)gj+k+n0(x)µ(dx)

+

∫
S×M

gn0(x)gj+k+n0(x)µ(dx)

∫
S×M

gk+n0(x)gj+n0(x)µ(dx)

and from Appendix A ∫
S×M

gm(x)gn(x)µ(x) = rX [m− n].

Thus, the last three terms are

r2X [k] + r2X [j] + rX [j + k]rX [j − k]

and clearly do not depend on n0. Considering the first term, which we denote by I, we have

I =

∫ 1/2

0

∫ ∞

0

∫ 2π

0

1

(λ0/2)2
a4 cos[2πfn0 + φ] cos[2πf(k + n0) + φ]

· cos[2πf(j + n0) + φ] cos[2πf(j + k + n0) + φ]λ0pΦ(φ)pA(a)p(f)dφ da df

=
4E[A4]

λ0

∫ 1/2

0

∫ 2π

0
[cos[2πfn0 + φ] cos[2πf(k + n0) + φ]

· cos[2πf(j + n0) + φ] cos[2πf(j + k + n0) + φ]]
1

2π
p(f)dφ df
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To evaluate the integral over φ we let zi = exp(jθi), i = 1, 2, 3, 4 with

θ1 = 2πfn0 + φ

θ2 = 2πf(k + n0) + φ

θ3 = 2πf(j + n0) + φ

θ4 = 2πf(j + k + n0) + φ

so that the fourth-order product of cosines in brackets becomes

1

16

4∏
i=1

(zi + z∗i ).

When multiplied out, only the product terms that have two unconjugated zi’s and two conjugated

zi’s so that the term does not depend on φ will produce a nonzero contribution to the integral. It

can be shown that this results in the terms

1

8
[cos(θ1 + θ2 − θ3 − θ4) + cos(θ1 − θ2 + θ3 − θ4) + cos(θ1 − θ2 − θ3 + θ4)]

which is

1

8
[cos(−2πfj − 2πfj) + cos(−2πfk − 2πfk) + cos(−2πfk + 2πfk)] =

1

8
[cos(4πfj) + cos(4πfk) + 1] .

At this point we see that the fourth-order moment does not depend on n0 and hence the

first condition for ergodicity is satisfied. Continuing on we compute the fourth-order moment

E[X[0]X[k]X[j][j + k]], which is just the previous expression with n0 = 0.

We now continue the evaluation of I.

I =
4E[A4]

λ0

∫ 1/2

0

∫ 2π

0
[cos[2πfn0 + φ] cos[2πf(k + n0) + φ]

· cos[2πf(j + n0) + φ] cos[2πf(j + k + n0) + φ]]
1

2π
p(f)dφdf

=
E[A4]

2λ0

∫ 1/2

0

∫ 2π

0
[cos(4πfj) + cos(4πfk) + 1]

1

2π
p(f)dφdf

=
E[A4]

2λ0

∫ 1/2

0
[cos(4πfj) + cos(4πfk) + 1] p(f)df

=
E[A4]

2λ0E[A2]

∫ 1
2

− 1
2

[cos(2πfj) + cos(4πfk) + 1]
E[A2]p(|f |)

2
df

=
E[A4]

2λ0E[A2]
[rX [2j] + rX [2k] + rX [0]]

so that

E[X[0]X[k]X[j]X[j + k]] =
E[A4]

2λ0E[A2]
[rX [2j] + rX [2k] + rX [0]] + r2X [k] + r2X [j] + rX [j + k]rX [j− k].
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Thus,

lim
M→∞

1

M + 1

M∑
j=0

E[X[0]X[k]X[j]X[j + k]] = lim
M→∞

1

M + 1

M∑
j=0

E[A4]

2λ0E[A2]
(rX [2j] + rX [2k] + rX [0])

+ lim
M→∞

1

M + 1

M∑
j=0

(r2X [j] + rX [j + k]rX [j − k]) + r2X [k]

and assuming that
∑M

j=0 |rX [j]| < ∞ and
∑M

j=0 |r2X [j] + rX [j + k]rX [j − k]| < ∞, which will be

true for an absolutely continuous spectral measure, we see that

lim
M→∞

1

M + 1

M∑
j=0

E[X[0]X[k]X[j]X[j + k]] =
E[A4]

2λ0E[A2]
(rX [2k] + rX [0]) + r2X [k]

which will only approach r2X [k] as λ0 → ∞.

C Derivation of Joint Characteristic Function

The principal approach to determining properties of a Poisson process is the characteristic function

and Campbell’s theorem [12]. The general fourth-order moments necessary do not appear in the

literature and so this appendix fills that gap. In the process we will also derive the lower-order

moments, some of which are in [12], as well as many other references. We use a general procedure

to allow the application to any Poisson process.

The joint characteristic function of Z = [Z1 Z2 . . . Zp]
T as given by (10) can be shown to be

ψz(ω) = E[exp(jωTZ)] = exp

[∫
S×M

(
exp[jωTg(x)] − 1

)
µ(dx)

]

where ω = [ω1 ω2 . . . ωp]
T , g(x) = [g1(x) g2(x) . . . gp(x)]

T , and µ(A) is the mean measure of the set

A. It is asumed that the integral exists, which is assured if µ(S ×M) < ∞. It can be shown by

Campbell’s theorem that

E[gi(X)] =

∫
S×M

gi(x)µ(dx)

and assuming this equals zero, we have that

ψz(ω) = exp

[∫
S×M

(
exp[jωTg(x)] − jωTg(x) − 1

)
µ(dx)

]

= exp

[∫
S×M

∞∑
k=2

(jωTg(x))k

k!
µ(dx)

]

= exp

[ ∞∑
k=2

∫
S×M

(jωTg(x))k

k!
µ(dx)

]

with the last step justified via the Beppo-Levi theorem and the assumption that

∞∑
k=2

∫
S×M

∣∣∣∣(jωTg(x))k

k!

∣∣∣∣µ(dx) <∞.
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Next to differentiate the characteristic function it is convenient to let

G(ω, ν, h) =

∞∑
k=ν

∫
S×M

(
∑p

i=1 jωigi(x))
k

k!
h(x)µ(dx)

where ν ≥ 0 so that we have

ψz(ω) = exp(G(ω, 2, e))

and e(x) = 1. Note that

∂G(ω, ν, e)

∂ωm
=

{
G(ω, ν − 1, jgm) ν ≥ 1

G(ω, 0, jgm) ν < 1

so that if the second argument of G is less than zero, it should be set to zero. Similarly, we have

∂2G

∂ωm∂ωn
= G(ω, ν − 2, j2gmgn)

∂3G

∂ωm∂ωn∂ωr
= G(ω, ν − 3, j3gmgngr)

=
∂4G

∂ωm∂ωn∂ωr∂ωs
= G(ω, ν − 4, j4gmgngrgs).

Also we make use of the relationship

G(ω, ν, h)|ω=0 =

{ ∫
S×M h(x)µ(dx) ν = 0

0 ν ≥ 1

As a result we obtain the moments as follows. They are

E[Zm] =
1

j

∂ψz

∂ωm

∣∣∣∣
ω=0

=
1

j
ψz(0)G(0, 1, jgm) = 0.

E[ZmZn] =
1

j2
∂2ψz

∂ωm∂ωn

∣∣∣∣
ω=0

and

∂2ψz

∂ωm∂ωn
=

∂

∂ωm
[ψz(ω)G(ω, 1, jgm)]

= ψz(ω)G(ω, 0, j2gmgn) + ψz(ω)G(ω, 1, jgn)G(ω, 1, jgm).

Evaluating this at ω = 0 produces G(0, 0, j2gmgn) or finally

E[ZmZn] =

∫
S×M

gm(x)gn(x)µ(dx).

The first and second moment are just Campbell’s theorem. Next

E[ZmZnZr] =
1

j3
∂3ψz

∂ωm∂ωn∂ωr

∣∣∣∣
ω=0
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and

∂3ψz

∂ωm∂ωn∂ωr
=

∂

∂ωr

[
ψz(ω)G(ω, 0, j2gmgn) + ψz(ω)G(ω, 1, jgn)G(ω, 1, jgm)

]
= ψz(ω)G(ω, 0, j3gmgngr) + ψz(ω)G(ω, 1, jgr)G(ω, 0, j

2gmgn)

+ ψz(ω)
[
G(ω, 0, j2gngr)G(ω, 1, jgm) +G(ω, 1, jgn)G(ω, 0, j

2gmgr)
]

+ ψz(ω)G(ω, 1, jgr)G(ω, 1, jgn)G(ω, 1, jgm).

Finally, we have

E[ZmZnZr] =

∫
S×M

gm(x)gn(x)gr(x)µ(dx).

The fourth-order moment is found similarly as

E[ZmZnZrZs] =
1

j4
∂4ψz

∂ωm∂ωn∂ωr∂ωs

∣∣∣∣
ω=0

.

Note that only the third derivative terms above that have a factor of G(·, 0, ·) after being differen-

tiated will be nonzero when ω = 0. This produces the fourth-order derivative evaluated at ω = 0

of

ψz(ω)G(ω, 0, j4gmgngrgs) + ψz(ω)G(ω, 0, j2grgs)G(ω, 0, j
2gmgn)

+ ψz(ω)G(ω, 0, j2gngr)G(ω, 0, j
2gmgs) + ψz(ω)G(ω, 0, j2gngs)G(ω, 0, j

2gmgr)

and finally we have

E[ZmZnZrZs] =

∫
S×M

gm(x)gn(x)gr(x)gs(x)µ(dx) +

∫
S×M

gr(x)gs(x)µ(dx)

∫
S×M

gm(x)gn(x)µ(dx)

+

∫
S×M

gn(x)gr(x)µ(dx)

∫
S×M

gm(x)gs(x)µ(dx)

+

∫
S×M

gn(x)gs(x)µ(dx)

∫
S×M

gm(x)gr(x)µ(dx).

D Derivation of Convergence to Gaussian Random Process

Consider an arbitrary number of samples K at arbitrary times {n1, n2, . . . , nK}. The characteristic
function of Z = [X[n1]X[n2] . . . X[nK ]]T was shown in Appendix C to be given by

ψz(ω) = exp

[ ∞∑
k=2

∫
S×M

(jωTg(x))k

k!
µ(dx)

]

where x = [f aφ]T and

x[ni] = gi(x) =
1√
λ0/2

a cos(2πfni + φ).
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Thus, we have

lnψz(ω) =

∞∑
k=2

∫ 1/2

0

∫ ∞

0

∫ 2π

0

1

k!

(
j

K∑
i=1

ωi
1√
λ0/2

a cos(2πfni + φ)

)k

λ0p(f)pA(a)pΦ(φ)dφ da df

=
∞∑
k=2

∫ 1/2

0

∫ ∞

0

∫ 2π

0

1

λ
k/2−1
0 k!

(
j
√
2

K∑
i=1

ωia cos(2πfni + φ)

)k

p(f)pA(a)pΦ(φ)dφ da df

=

∫ 1/2

0

∫ ∞

0

∫ 2π

0

1

2!

(
j
√
2

K∑
i=1

ωia cos(2πfni + φ)

)2

p(f)pA(a)pΦ(φ)dφ da df +O(1/
√
λ0)

and as λ0 → ∞

lnψz(ω) → −E[A2]

∫ 1/2

0

∫ 2π

0

(
K∑
i=1

ωi cos(2πfni + φ)

)2

p(f)pΦ(φ)dφ df

= −1

2

K∑
i=1

K∑
j=1

ωiωj[A]ij

where

[A]ij = 2E[A2]

∫ 1/2

0

∫ 2π

0
cos(2πfni + φ) cos(2πfnj + φ)p(f)pΦ(φ)dφ df

= E[A2]

∫ 1/2

0
cos(2πf(ni − nj))p(f)df.

Therefore, we have that

[A]ij =

∫ 1/2

0
cos(2πf(ni − nj))p(f)df

=

∫ 1/2

0
cos(2πf(ni − nj))E[A2]p(f)df

=

∫ 1/2

−1/2
cos(2πf(ni − nj))

(
E[A2]

2
p(|f |)

)
df

= rX [ni − nj].

Thus,

ψz(ω) → exp

(
−1

2
ωTCω

)
where

[C]ij = rX [ni − nj ]

and C is recognized as the covariance matrix, from which we can conclude that the random process

approaches a Gaussian random process as λ0 → ∞.
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