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Abstract

In this paper we address the design of an optimal transmit signal and its corresponding

optimal detector for a radar system. The focus is on the spatial-temporal aspects of the waveform

and is accomplished using the concept of the frequency-wavenumber spectrum. A uniform line

array is assumed but the results are easily extended to a uniform planar array. The target

is assumed to be a zero Doppler target with known range and bearing extent and the clutter

is a stationary Gaussian random process with a known frequency-wavenumber spectrum. The

advantage of the proposed approach is that a simple analytical result is obtained which is

guaranteed to be optimal. Also, the current computational complexity of STAP, which requires

the inversion of a large dimension matrix, can be reduced by using FFTs.

1 Introduction

We extend the results of our previous work that addressed optimal detector and transmit signal

design for a temporal signal [1]. We now present the optimal detector and signal design for a

space-time signal transmitted and received using a linear array. The results are directly applicable

to STAP [2].
∗This work was supported by the Air Force Research Lab, Rome, NY under subcontract FA8750-04-C-0230 and

by the Air Force Office of Scientific Research under contract FA9550-08-1-0459 .
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The problem of signal waveform design for optimal detection in signal-dependent noise has been

a problem of long-standing interest. In particular, the fields of radar and sonar have seen much

work in this area. Some of the salient references are listed in [3]–[11]. Signal-dependent noise is

generally referred to as clutter in radar and reverberation in active sonar. In either case, the fact

that the received noise characteristics are dependent on the transmitted signal greatly complicates

the signal design. For the case of signal design in colored noise whose spectrum does not depend

on the transmitted signal, the solution is well known. It says to place all the signal energy into the

frequency band for which the noise power is minimum. Correspondingly, for a discrete signal vector

one should choose the signal as the eigenvector of the noise covariance matrix whose eigenvalue is

minimum [13].

Few, if any, papers have addressed signal design for the general problem of spatial-temporal

radar detection for signals in signal-dependent noise. In this paper we describe an approach that

yields a simple solution, subject to the assumptions of a particular scattering model. The scattering

model assumes that the signal-dependent noise is the output of a random linear time/spatially

invariant (LTSI) spatial-temporal filter, whose impulse response can be assumed to be a realization

of a two-dimensional (2-D) wide sense stationary (WSS) Gaussian random process. It should be

noted that this model does not allow for spectral spreading, as would be inherent in an intrinsic

clutter motion situation. It does, however, allow us to address the clutter characteristics associated

with a moving platform and hence can be used for many STAP applications.

For a practical implementation one can envision a probing signal that measures the channel

characteristics needed for waveform design. Then, the optimal transmit signal may be designed

“in-situ”. Techniques such as reported in [14] for channel estimation then become immediately

applicable.

The paper is composed of the following. Section 2 presents the problem statement and the

modeling assumptions employed. The optimal detector and its performance for a given transmit

signal is described in Section 3. The signal that maximizes the detection performance is stated in

Section 4. The application to STAP is the subject of Section 5 while Section 6 gives an explicit

signal design example to combat clutter. Finally, a discussion and conclusions are given in Section

7.

2 Problem Statement and Modeling Assumptions

The model for the real bandpass received waveform is shown in Figure 1. A target that can have

range and bearing extent is assumed so that ḡ(t, x) = Aq̄(t, x), where q̄(t, x) is deterministic and

known and A is a random reflection factor (the “overbar” will denote a real bandpass process with

its absence denoting the complex envelope to be introduced later). We assume that the received

waveform is a real bandpass process and is denoted by z̄(t, x) for |t| ≤ T/2 and |x| ≤ L/2. Initially,
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Figure 1: Modeling of real bandpass received waveform. s̄T (t, x) is the transmitted signal, h̄(t, x)

is the impulse response of the random LTSI channel filter, ḡ(t, x) is the impulse response of the

random LTSI target filter, and n̄(t, x) represents ambient noise and interference.

a receive linear aperture in space is assumed and hence the use of x, but is easily replaced by a

uniform linear array (ULA), i.e., a sampled version in space. When no target return is present,

i.e., under hypothesis H0, we have that z̄(t, x) = c̄(t, x) + n̄(t, x), where c̄(t, x) denotes clutter

(henceforth, we will use radar terminology) and n̄(t, x) is the sum of ambient noise and interference,

i.e., jamming. Under the hypothesis H1, the target return is modeled using ḡ(t, x) = Aq̄(t, x) so

that r̄(t, x) = As̄T (t, x) ∗ ∗q̄(t, x), where “∗∗” denotes two-dimensional (2-D) convolution. We have

assumed a zero Doppler target. This is because it is not possible to design a transmit signal for each

possible Doppler shift due to target motion. As the most difficult scenario is that of a zero Doppler

target, we have chosen to address this problem. It is felt that if we can make progress on this signal

design problem, then the nonzero Doppler target should yield improved performance as well. Note

that it is only the optimality of the transmit signal that is in question for nonzero Doppler targets.

The proposed detector is still applicable to the nonzero Doppler target but of course will require

separate Doppler channels. Also, n̄(t, x) is modeled as a 2-D WSS Gaussian random process with

zero mean and frequency-wavenumber power spectral density (FWPSD) Pn̄(F,K) [12]. Here F

denotes the temporal frequency in Hz and K denotes wavenumber component in cycles/m. The

positive frequency band is assumed to be F0 − W/2 ≤ F ≤ F0 + W/2, where F0 is the transmit

signal center frequency and hence all FWPSDs are defined over this band. Finally, we model the

clutter return c̄(t, x) as the output of a random LTSI spatial-temporal filter with impulse response

h̄(t, x), and whose input is the transmitted signal. Its FWPSD is given as Ph̄(F,K). Note that

Doppler spreading due to intrinsic clutter motion is not accommodated, although platform motion

can be incorporated. To model the former the more usual model is a convolution in frequency,

which yields frequency spreading, as opposed to a multiplication. A further extension that will
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model intrinsic clutter motion is the use of a random time varying and spatially invariant filter.

We do not pursue this further. Initially, we will also assume that the platform is at rest and latter

extend the results to allow for platform motion inherent in airborne MTI radars.

Continuing with the clutter modeling, if s̄T (t, x) is the transmit signal, then the clutter return

will be c̄(t, x) = s̄T (t, x) � �h̄(t, x) at the receiver. By reversing the convolution we can write this

as c̄(t, x) = h̄(t, x) � �s̄T (t, x), where now the filter input is h̄(t, x) and the filter impulse response

is s̄T (t, x). If we now assume that h̄(t, x) is a 2-D WSS Gaussian random process with zero mean

and FWPSD Ph̄(F,K), then c̄(t, x) will also be a 2-D WSS Gaussian random process [16] with

zero mean and FWPSD Pc̄(F,K) = LT |S̄T (F,K)|2Ph̄(F,K), where S̄T (F,K) is the normalized

2-D Fourier transform (the usual Fourier transform multiplied by 1/
√

LT ) of s̄T (t, x) – see (1)).

3 Optimal Detector and its Performance for a Given Transmit

Signal

Previously, all signals and noises have been defined as real bandpass processes. Their support in

the F-K domain is shown in Figure 2 [12]. This represents the spectrum obtained by sensing a 3-D

space-time field with a linear aperture. Hence, K is the wavenumber component along the aperture

direction, which is assumed to be along the x axis. With the previous modeling assumptions and

F

K

F0 − W/2 F0 + W/2

F0/c = 1/λ0

F0

K = −F/c K = F/c

Figure 2: Support of real bandpass FWPSD around transmit frequency shown as the shaded region.

assuming that the time-bandwidth product WT satisfies WT > 16 and the spatial equivalent of

the “time-bandwidth product” (2/λ0)L > 16, where λ0 is the wavelength at the center frequency

F0 (a narrowband assumption is always made), we can easily derive an optimal detector.

We first define the FW spectrum or 2-D Fourier transform of the received real bandpass process
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as

Z̄(F,K) =
1√
LT

∫ L/2

−L/2

∫ T/2

−T/2
z̄(t, x) exp(−j2π(Ft − Kx))dtdx (1)

where the negative frequencies are redundant since Z̄(−F,−K) = Z̄∗(F,K) for real z̄(t, x). Con-

sidering only the positive frequency components, we can rewrite the Fourier transform of the real

bandpass process as Z̄(F + F0,K), where now |F | ≤ W/2, which are the baseband frequencies.

Then, we have

Z̄(F + F0,K) =
1√
LT

∫ L/2

−L/2

∫ T/2

−T/2
z̄(t, x) exp[−j2π((F + F0)t − Kx)]dtdx

=
1√
LT

∫ L/2

−L/2

∫ T/2

−T/2
[z̄(t, x) exp(−j2πF0t)]LPF︸ ︷︷ ︸

z(t,x)

exp(−j2π(Ft − Kx))dtdx.

Since we are only concerned with the positive frequency components, the lowpass filtering, denoted

above by “LPF”, will not affect the transform. Now z(t, x) is the complex envelope of z̄(t, x) [15]

and thus we have that Z̄(F + F0,K) = Z(F,K) for |F | ≤ W/2, where Z(F,K) is just the Fourier

transform of the complex envelope. The support for the FW spectrum of the complex envelope is

shown in Figure 3. As a result the Neyman-Pearson detector, which is derived in Appendix A, is

F

K

−W/2 W/2

1/λ0

−1/λ0

−F0 F0

Figure 3: Support of FW spectrum of complex envelope z(t, x) (which is obtained from z̄(t, x) by

demodulation to baseband and lowpass filtering). The received bandpass signal z̄(t, x) is assumed

to be narrowband.

given in term of the baseband frequencies as∣∣∣∣∣∣
M/2∑

m=−M/2

N/2∑
n=−N/2

Z(Fm,Kn)S∗
T (Fm,Kn)

√
LTQ∗

t (Fm,Kn)
Ph(Fm,Kn)LT |ST (Fm,Kn)|2 + Pn(Fm,Kn)

∣∣∣∣∣∣
2

> γ (2)

where Fm = m/T with M = WT , and Kn = n/L with N = (2/λ0)L and the baseband FWPSDs

are Ph(F,K) = [Ph̄(F + F0,K)]LPF , Pn(F,K) = [Pn̄(F + F0,K)]LPF , Qt(F,K) is the FW Fourier
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transform of q(t, x) (with the subscript “t” denoting the target, not time), which is the complex

envelope of q̄(t, x), and ST (F,K) is the FW Fourier transform of the transmitted signal complex en-

velope. It is seen that the detector consists of a prewhitener in frequency and wavenumber, followed

by a matched filter to the signal
√

LTST (F,K)Qt(F,K), and a magnitude-squaring operation. In

practice, FFTs would be used to approximate the continuous-time Fourier transforms used in (2).

The detection performance of the optimal detector is shown in Appendix A to be monotonically

increasing with the deflection coefficient

d2 = σ2
A

∫ 1/λ0

−1/λ0

∫ W/2

−W/2

LT |ST (F,K)|2LT |Qt(F,K)|2
Ph(F,K)LT |ST (F,K)|2 + Pn(F,K)

dFdK. (3)

Hence, the optimal signal design problem reduces to the relatively simple problem of choosing a

transmit signal sT (t, x) that is constrained in energy, which is defined as

E =
∫ 1/λ0

−1/λ0

∫ W/2

−W/2
LT |ST (F,K)|2dFdK (4)

and that maximizes d2. Note that it is only the energy spectral density (ESD) or Es(F,K) =

LT |ST (F,K)|2 that affects performance. The phase of the Fourier transform can be chosen arbi-

trarily and in practice will be selected for ease of signal realizability.

4 Maximizing the Detection Performance by Transmit Signal De-

sign

The key to maximizing (3) over all |ST (F,K)|2, subject to the constraints that |ST (F,K)|2 ≥ 0 and

the energy constraint of (4), lies in the property that d2 is a concave functional of |ST (F,K)|2. This

assures us that the solution found via differential means will produce a global maximum. However,

with the proposed approach, we will only find |ST (F,K)|2, so that a further necessary step is to

synthesize a space/time-limited signal with the given ESD. Fortunately, this is possible and amounts

to a filter design problem based on a given magnitude frequency response specification (see also

Section 6.3 for more details for STAP). Many techniques are available to effect the one-dimensional

designs [17], with 2-D designs as extensions. Future work will address the signal design problem.

The ESD that maximizes d2 is found in a similar fashion to that in [1] as

Es(F,K) = LT |ST (F,K)|2 = max

(√
LT |Qt(F,K)|2Pn(F,K)/α − Pn(F,K)

Ph(F,K)
, 0

)
(5)

where max(x, 0) means the maximum of x and 0. The parameter α is found from the energy

constraint of (4) so that we must solve∫ 1/λ0

−1/λ0

∫ W/2

−W/2
max

(√
LT |Qt(F,K)|2Pn(F,K)/α − Pn(F,K)

Ph(F,K)
, 0

)
dFdK = E (6)
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for α, where α is positive. A solution for α is guaranteed since if

g(α) =
∫ 1/λ0

−1/λ0

∫ W/2

−W/2
max

(√
LT |Qt(F,K)|2Pn(F,K)/α − Pn(F,K)

Ph(F,K)
, 0

)
dFdK

then g(0) = ∞ and g(∞) = 0 and g is a continuous function, which means that it takes on all

values in between by the intermediate value theorem. We can narrow down the search region for

α, however, by noting that for E > 0, we must have
√

LT |Qt(F,K)|2Pn(F,K)/α−Pn(F,K)

Ph(F,K) > 0 for at least

some values of (F,K). We can then exclude those values of α for which√
LT |Qt(F,K)|2Pn(F,K)/α − Pn(F,K)

Ph(F,K)
≤ 0

for all (F,K). These are the values α ≥ LT |Qt(F,K)|2/Pn(F,K). Thus, we need not search the

values for which α ≥ maxLT |Qt(F,K)|2/Pn(F,K) or we have that the search region is

0 < α < max
LT |Qt(F,K)|2

Pn(F,K)
.

We can also compute the maximum value of d2 to allow us to determine improvements over other

detectors, either in the case of a suboptimal detector, e.g., a matched filter, or in the case of the

optimal detector that uses a suboptimal transmit signal. The maximum value of d2 is given by (3)

with the optimal signal ESD given by (5).

5 STAP Modeling

5.1 Target Return Modeling

It is assumed that the platform is moving at a constant velocity v in the x-direction and that the

transmit/receive array is a uniformly spaced line array (ULA). The array is also aligned along the

x-direction. For simplicity we assume a 2-D geometry with the more general case found by a simple

extension [2]. As a result, the geometry is illustrated in Figure 4. The ensonified portion of the

environment at range R is shown as the solid semicircle. For the initial development we assume a

single omnidirectional transmitter at location xT and a stationary platform (v = 0). It transmits

a real bandpass signal s̄T (t) for |t| ≤ T/2, whose frequency band is given by B = {F : |F ± F0| ≤
W/2}. As before, we will assume a narrowband signal. A target located at a range R and bearing

θ from the array center reflects the signal and at location x an omnidirectional receiver produces

a received signal denoted by r̄(t, x). Assuming a target in the far field, the round trip delay to a

receiver located at x is τ(x) = 2R/c− (xT + x) cos(θ)/c, where c is the speed of propagation. As a

result, the received bandpass signal is r̄(t, x) = s̄T (t − τ(x)). For the time being we have assumed

a perfect reflector. Later we will allow the target to exhibit a finite spatial and temporal extent.
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Figure 4: Geometry of line array.

No account is taken of the propagation loss and/or dispersion. Thus we have

r̄(t, x) =
√

T

∫
B

S̄T (F ) exp[−j2πFτ(x)] exp(j2πFt)dF

=
√

T

∫
B

S̄T (F ) exp[−j2π(F/c)2R] exp[j2π(F/c)(x + xT ) cos θ] exp(j2πFt)dF.

Next assume that the bulk delay, i.e., τ(0) = 2R/c, is accounted for in the processor so that we

have

r̄(t, x) =
√

T

∫
B

S̄T (F ) exp[j2π(F/c)(x + xT ) cos θ] exp(j2πFt)dF.

For a propagating monochromatic plane wave the signal is represented as exp[j2π(Ft − KT r)],

where K is the vector wavenumber and points in the direction of the transmitted signal toward the

target, and r is the position vector of measurement. The x-component of K will be denoted by

K(o) and represents the wavenumber component of the outgoing wave. Note that K(o) is given by

K(o) = (F/c) cos θ so that for 0 ≤ θ ≤ π, we have that −F/c ≤ K(o) ≤ F/c. Using this we have

r̄(t, x) =
√

T

∫
B

S̄T (F ) exp[j2πK(o)(x + xT )] exp(j2πFt)dF.

For a more general target response the reflectivity will be a function of frequency and direction of

incident arrival angle. To incorporate this more realistic model we assume that an incident unit

amplitude complex monochromatic plane wave at frequency F0 and x-component of wavenumber

K
(o)
0 is backscattered from the target and toward the receiver with an amplitude AQ̄t(F0,−K

(o)
0 )

(the “t” subscript refers to the target and not time), where as before A ∼ CN (0, σ2
A). Hence,

an incident plane wave exp[j2π(F0t − K
(o)
0 x)] is backscattered in the reverse direction yielding

AQ̄t(F0,−K
(o)
0 ) exp[j2π(F0t+K

(o)
0 x)]. In order to reference the arrival angle as seen by the receive

array as incoming, we let K0 = −K
(o)
0 , which now represents the x-component of an arriving plane
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wave and is K0 = −(F0/c) cos θ. With these modifications we have that

r̄(t, x) = A
√

T

∫
B

S̄T (F )Q̄t(F,K0) exp[−j2πK0(x + xT )] exp(j2πFt)dF.

Considering next a finite length target so that the backscatter is over a sector of receiving azimuthal

angles 0 ≤ θ ≤ π, i.e., over K, and for a receive aperture of L m, we have the sum of the reflections

being expressable as

r̄(t, x) = A
√

LT

∫
B

∫ F/c

−F/c
S̄T (F )Q̄t(F,K) exp(−j2πKxT ) exp(j2πFt) exp(−j2πKx)dKdF.

Next we assume a discrete set of transmitters, i.e., an ULA, with transmitters at positions xTn

for n = −N/2, . . . , N/2. The transmit signal at the nth transmitter in the frequency domain is

denoted by S̄Tn(F ). Note that we have allowed for a different signal to be transmitted from each

transmitter. The received signal becomes by superposition

r̄(t, x) = A
√

LT

∫
B

∫ F/c

−F/c

N/2∑
n=−N/2

S̄Tn(F )Q̄t(F,K) exp(−j2πKxTn) exp[j2π(Ft − Kx)]dKdF

and it is now seen that the frequency-wavenumber (FW) spectrum of the received real bandpass

signal is

A

N/2∑
n=−N/2

S̄Tn(F )Q̄t(F,K) exp(−j2πKxTn) |F ± F0| ≤ W/2; −F/c ≤ K ≤ F/c.

Upon demodulating the received signal to baseband and lowpass filtering, we obtain the complex

envelope signal as

r(t, x) = [r̄(t, x) exp(−j2πF0t)]LPF

=


A

√
LT

∫ F0+W/2

F0−W/2

∫ F/c

−F/c

N/2∑
n=−N/2

S̄Tn(F )Q̄t(F,K) exp(−j2πKxTn)

· exp[j2π((F − F0)t − Kx)]dKdF

]
LPF

and letting F ′ = F − F0, this becomes

r(t, x) =


A

√
LT

∫ W/2

−W/2

∫ (F ′+F0)/c

−(F ′+F0)/c
Q̄t(F ′ + F0,K)

N/2∑
n=−N/2

S̄Tn(F ′ + F0)

· exp(−j2πKxTn) exp[j2π(F ′t − Kx)]dKdF ′




LPF
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and letting Qt(F,K) = Q̄t(F + F0,K) and STn(F ) = S̄Tn(F + F0), and invoking the narrowband

assumption, we have finally that

r(t, x) = A
√

LT

∫ W/2

−W/2

∫ 1/λ0

−1/λ0

Qt(F,K)
N/2∑

n=−N/2

STn(F ) exp(−j2πKxTn)

· exp[j2π(Ft − Kx)]dKdF (7)

which says that at baseband the FW spectrum of the received complex envelope signal is

R(F,K) = AQt(F,K)
N/2∑

n=−N/2

STn(F ) exp(−j2πKxTn)

= AQt(F,K)ST (F,K) (8)

where STn(F ) is the Fourier transform of the transmitted complex envelope signal from transmitter

n, and ST (F,K) can be interpreted as the overall transmit signal.

5.2 Clutter Modeling

We can use the same modeling for clutter except that the returns will be more widely distributed in

azimuth. Replacing the reflectivity factor, AQt(F,K), of the target in (7) by Qh(F,K), we assume

that the random space-time impulse response, which is F−1{Qh(F,K)}, is a wide sense stationary

complex Gaussian random process. As a result it can be shown that Qh(F,K) ∼ CN (0, Ph(F,K)),

where CN denotes a complex Gaussian probability density function and Ph(F,K) is a FW power

spectral density (PSD). It follows that the FW PSD of the clutter, which will be denoted by

Pc(F,K), can be written as

Pc(F,K) = LT

∣∣∣∣∣∣
N/2∑

n=−N/2

STn(F ) exp(−j2πKxTn)

∣∣∣∣∣∣
2

Ph(F,K) |F | ≤ W/2; |K| ≤ 1
λ0

= LT |ST (F,K)|2Ph(F,K). (9)

We must be careful to note that in specifying Ph(F,K), the frequency variable corresponds to a

physical scattering mechanism at F = F0 and not at baseband. In the next section we present

some examples to verify the reasonableness of the derived models.

6 Some Examples

6.1 Target Modeling

Consider that we transmit the same signal from all transmitters and steer a beam in the direction

of θ0. To do so the real bandpass signal transmitted from the nth transmitter is given as s̄Tn(t) =

10



s̄T (t − τn), where τn = (xTn/c) cos(θ0). As a result, the transmitted signal is given in the Fourier

domain as

S̄Tn(F ) = S̄T (F ) exp[−j2πF (xTn/c) cos(θ0)] = S̄T (F ) exp[−j2πK
(o)
0 xTn ]

where K
(o)
0 = (F/c) cos(θ0) is the outgoing wavenumber. Converting to an incoming wavenumber

produces K0 = −K
(o)
0 and converting to the complex envelope transmit signal

STn(F ) = ST (F ) exp(j2πK0xTn)

where K0 = −(F/c) cos(θ0). Using (7) we have

r(t, x) = A
√

LT

∫ W/2

−W/2

∫ 1/λ0

−1/λ0

Qt(F,K)ST (F )
N/2∑

n=−N/2

exp(−j2π(K − K0)xTn)

· exp[j2π(Ft − Kx)]dKdF (10)

and thus

R(F,K) = AQt(F,K)ST (F )
N/2∑

n=−N/2

exp(−j2π(K − K0)xTn). (11)

By using the same transmit signal at each transmitter the overall transmitted signal is seen to be

separable in space and time. A more general signal is needed to realize an arbitrary space-time

transmit signal as discussed in Section 5.3. Also, the received FW of the signal is maximum in

amplitude when K = K0 as expected.

6.2 Clutter Modeling

In general, the FWPSD for the clutter will be from (9)

Pc(F,K) = LT |ST (F,K)|2Ph(F,K)

and corresponds to the PSD of the clutter space-time random process c(t, x) observed along the

line array, where ST (F,K) is given by (9). As an example, for narrowband transmit signals, then

Ph(F,K) will probably not depend on the frequency deviation from F = F0. As a result, for

isotropic scattering we would have Ph(F,K) = P0 and thus,

Pc(F,K) = P0LT |ST (F,K)|2.
Alternatively, for the often used model of clutter patches (a finite set of discrete scatterers) with

each one having a power of Pi, we would have

Ph(F,K) =
I∑

i=1

Pi√
L

δ(K − Ki).

This will produce a clutter FWPSD of

Pc(F,K) =
I∑

i=1

Pi√
L

LT |ST (F,Ki)|2δ(K − Ki).

11



6.3 Signal Generation for ULA

We assume a ULA with half wavelength spacing at F = F0 of ∆x = λ0/2 and also a pulse train

with pulse repetition interval of ∆t = 1/W . Then, we have that

STn(F ) =
1√
T

∫ T/2

−T/2
sTn(t) exp(−j2πFt)dt |F | ≤ W/2

and the pulse train can be represented as

sTn(t) =
√

T

P/2∑
p=−P/2

sn[p]δ(t − p∆t) n = −N/2, . . . , N/2.

Thus,

STn(F ) =
P/2∑

p=−P/2

sn[p] exp(−j2πFp∆t)

and we have that

ST (F,K) =
N/2∑

n=−N/2

STn(F ) exp(−j2πKxTn)

=
N/2∑

n=−N/2

P/2∑
p=−P/2

sn[p] exp(−j2πFp∆t) exp(−j2πKn∆x)

=
P/2∑

p=−P/2

N/2∑
n=−N/2

sn[p] exp[−j2π(Fp∆t + Kn∆x)].

If we normalize the frequencies to f = F∆t and k = K∆x, then we have finally that |f | ≤ 1/2 and

|k| ≤ 1/2. This yields

S
(D)
T (f, k) =

P/2∑
p=−P/2

N/2∑
n=−N/2

sn[p] exp[−j2π(fp + kn)] − 1/2 ≤ f ≤ 1/2; −1/2 ≤ k ≤ 1/2

which is the discrete-time Fourier transform of the two-dimensional sequence sn[p]. Standard digital

signal processing approaches can be used to synthesize this discrete space-time signal to yield a

given energy spectral density.

7 Extension to a Moving Platform

Now assume that the platform is moving in the x-direction relative to the ground with speed v. The

received complex envelope signal observed with respect to a ground reference becomes r(t, xp+2vt),

where xp is the x-position relative to the platform array origin as shown in Figure 4. As a result,

12



we have from (7)

r(t, xp + 2vt) = A
√

LT

∫ W/2

−W/2

∫ 1/λ0

−1/λ0

Qt(F,K)
N/2∑

n=−N/2

STn(F ) exp(−j2πKxTn)

· exp[j2π(Ft − K(xp + 2vt))]dKdF (12)

or letting rp(t, x) = r(t, xp + 2vt) be the received signal relative to the platform and where now x

denotes the position relative to the origin of the ULA, we have

rp(t, x) = A
√

LT

∫ W/2

−W/2

∫ 1/λ0

−1/λ0

Qt(F,K)
N/2∑

n=−N/2

STn(F ) exp(−j2πKxTn)

· exp[j2π((F − 2Kv)t − Kx)]dKdF.

Next let F ′ = F − 2Kv so that

rp(t, x) = A
√

LT

∫ W/2

−W/2

∫ 1/λ0

−1/λ0

Qt(F ′ + 2Kv,K)
N/2∑

n=−N/2

STn(F ′ + 2Kv) exp(−j2πKxTn)

· exp[j2π(F ′t − Kx)]dKdF ′

where the limits have not changed since we assume that the increase in bandwidth due to platform

motion (or Doppler) is accommodated by the bandwidth W . Note that now the FW spectrum of

the received complex envelope signal is

R(F,K) = AQt(F + 2Kv,K)
N/2∑

n=−N/2

STn(F + 2Kv) exp(−j2πKxTn)

= AQt(F + 2Kv,K)ST (F + 2Kv,K) |F | ≤ W/2

and that the clutter FWPSD will similarly be

Pc(F,K) = LT |ST (F + 2Kv,K)|2Ph(F + 2Kv,K).

Note that this is the same receive signal and clutter FWPSD as before except that F is replaced

by F + 2Kv due to platform motion. If for example, the clutter is uniform in wavenumber, i.e.,

returns at all azimuthal angles (0 ≤ θ ≤ π) and is narrow in frequency, i.e., for a CW transmit,

then for no platform motion (v = 0) Ph(F,K) will be maximum along F = 0 for all K as shown

in Figure 5, assuming ground clutter. As a result, with platform motion the clutter ridge should

appear when F + 2Kv = 0 or at K = −F/(2v) as shown in Figure 6. Finally, if we plot u = cos(θ)

along the horizontal axis and F along the vertical axis, then Figure 6 becomes Figure 7. This is the

usual clutter ridge that is seen after processing actual data, which can be considered an estimate

of the received clutter FWPSD. To see this we have that the ridge is given by

F = −2Kv ≈ 2
F0

c
cos(θ)v = 2

F0

c
vu

13



F

K

−W/2 W/2

1/λ0

−1/λ0

Figure 5: Frequency-wavenumber clutter ridge for no platform motion, i.e., support of Ph(F,K).

F

K

−W/2 W/2

1/λ0

−1/λ0

1
2v

Figure 6: Frequency-wavenumber clutter ridge for platform motion, i.e., support of Ph(F,K).

with the approximation used for a narrowband system. Thus, we have that

F = βu

where the slope in the frequency-angle (actually frequency-cosine-angle) domain is

β =
2v
c

F0.

Clearly, for good detectability the target Doppler should cause the target to appear outside the

clutter ridge.
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−1 1
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c F0

1

Figure 7: Frequency-angle clutter ridge for platform motion - usual depiction.

8 Detectability Improvement via Signal Design

In this section we describe an example of the improvement in detectability when the signal is

chosen optimally to mitigate the effects of ground clutter. To do so we model the clutter as a

sum of ground clutter and a discrete scatterer near the target. The platform is assumed to be

stationary so that the ground clutter appears as in Figure 5. The system parameters chosen are a

center frequency of F0 = 1 Ghz, a signal bandwidth of W = 1 Mhz, an ambient noise background

having a FWPSD of Pn(F,K) = σ2
n, where 0.001 ≤ σ2

n ≤ 0.01. The target response FWPSD is

assumed to be LT |Qt(F,K)|2 = 1 for all |F | ≤ W/2 and |K| ≤ 1/λ0. The FWPSD of the clutter

is modeled by

Ph(F,K) =
Pg√
2πσ2

g

exp
[
− 1

2σ2
g

(F/W )2)
]

+
Pd√
2πσ2

d

exp
[
− 1

2σ2
d

(
(F/W )2 + ((K − Kd)/(1/λ0))2

)] |F | ≤ W/2; |K| ≤ 1/λ0

where the first term is the ground clutter and the second term is the discrete clutter return. Note

that the ground clutter is uniform in wavenumber (doesn’t depend on K) and has a spread in fre-

quency determined by the value of σg. The discrete clutter component is circularly symmetric with

an extent given by σd and centered at (F,K) = (0,Kd). In the example to follow the parameters

chosen were Pg = 100, σ2
g = 0.1, Pd = 100, σ2

d = 0.001,Kd = 0.05(1/λ0). The clutter FWPSD is

shown in Figures 8 and 9. Because the ambient noise FWPSD Pn(F,K) is constant as is the

target FWPSD Qt(F,K), it is easily shown from (5) that the optimal signal is one for which

Esopt(F,K)Ph(F,K) = c (13)
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Figure 8: Frequency-wavenumber PSD for clutter, Ph(F,K) - 3D plot.

where c is a constant. In effect, the signal is chosen to make the noise due to clutter white in

frequency and wavenumber. The constant c then is specified to maintain the energy constraint. For

this example the optimal transmit FW energy spectral density Esopt(F,K) is shown in Figure 10.

It is seen to be inversely proportional to the clutter PSD by comparing Figure 10 to Figure 9.

As a comparison to a suboptimal signal we consider a signal with frequency-wavenumber energy

spectral density (FWESD) given by

Es(F,K) =
Pd√
2πσ2

d

exp
[
− 1

2σ2
d

(
(F/W )2 + (K/(1/λ0))2

)]

which has the same PSD as the discrete clutter component except that it is centered at K = 0 as

opposed to K = Kd. As might be expected the lack of prewhitening causes the signal return energy

to have to compete with the discrete clutter and hence the detection performance will be poor. To

compare the performance we can use the deflection coefficients which for the optimal signal is given
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Figure 9: Frequency-wavenumber PSD for clutter, Ph(F,K) - image plot.

from (3) and (13), and noting that Es(F,K) = LT |ST (F,K)|2 as

d2
opt = σ2

A

∫ 1/λ0

−1/λ0

∫ W/2

−W/2

LT |ST (F,K)|2LT |Qt(F,K)|2
Ph(F,K)LT |ST (F,K)|2 + Pn(F,K)

dFdK

= σ2
A

∫ 1/λ0

−1/λ0

∫ W/2

−W/2

c/Ph(F,K)
c + σ2

n

dFdK. (14)

When the energy constraint is enforced we can solve for c using

E =
∫ 1/λ0

−1/λ0

∫ W/2

−W/2
Esopt(F,K)dFdK

=
∫ 1/λ0

−1/λ0

∫ W/2

−W/2

c

Ph(F,K)
dFdK

and therefore

c =
E∫ 1/λ0

−1/λ0

∫W/2
−W/2

1
Ph(F,K)dFdK

.

Thus, (14) becomes

d2
opt = σ2

A

E ∫ 1/λ0

−1/λ0

∫W/2
−W/2 1/Ph(F,K)dFdK

E + σ2
n

∫ 1/λ0

−1/λ0

∫W/2
−W/2 1/Ph(F,K)dFdK

(15)
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Figure 10: Frequency-wavenumber ESD Esopt(F,K) for optimal transmit signal.

For any arbitrary transmit signal with FWESD Es(F,K) it follows from (3) that the deflection

coefficient is

d2 = σ2
A

∫ 1/λ0

−1/λ0

∫ W/2

−W/2

Es(F,K)
Ph(F,K)Es(F,K) + σ2

n

dFdK (16)

where
∫ 1/λ0

−1/λ0

∫W/2
−W/2 Es(F,K)dFdK = E to satisfy the energy constraint. Both these deflection

coefficients are shown in Figure 11 for σ2
A = 1 versus the energy-to-noise ratio E/σ2

n. It is seen that

a substantial improvement in detectability is obtained by using careful signal design.

9 Discussion and Conclusions

We have derived an optimal detector and transmit signal for a radar that has to operate in a clutter

environment. In contrast to a multitude of previous approaches the entire space-time problem is

addressed. Consequently, the optimal signal is specified by its frequency-wavenumber energy spec-

tral density. Subject to a certain type of clutter model the solution has been obtained analytically

and an example given. The results indicate a substantial improvement in performance, as expected.

However, the assumption that the optimal signal can be synthesized in practice is critical and will
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Figure 11: Deflection coefficients for the optimal signal and one that does not account for the

clutter appropriately.

need further study to determine its feasibility. This is especially important in light of its space-time

nature. Future studies will attempt to provide some real-world validation of the results contained

herein.
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A Appendix A – Derivation of Neyman-Pearson Detector and its

Performance

As per the assumptions described in Section 2 we consider the following detection problem.

H0 : z(t, x) = c(t, x) + n(t, x)

H1 : z(t, x) = r(t, x) + c(t, x) + n(t, x)

for −T/2 ≤ t ≤ T/2 and −L/2 ≤ x ≤ L/2. The assumptions are that r(t, x) = AsT (t, x) ∗
∗q(t, x), where sT (t, x) ∗ ∗q(t, x) is a known complex signal, A is a complex random variable with

A ∼ CN (0, σ2
A), c(t, x) is a complex 2-D WSS Gaussian random process with zero mean and

FWPSD Pc(F,K) = Ph(F,K)LT |ST (F,K)|2 = Ph(F,K)Es(F,K), and n(t, x) is a complex 2-D

WSS Gaussian random process with zero mean and FWPSD Pn(F,K). All signals and random

processes are bandlimited to W/2 Hz and 1/λ0 cycles/m (see Figure 3). The random variable A, the

random processes c(t, x) and n(t, x) are all independent of each other. We convert the received data

into the frequency domain using a Fourier transform as defined by (9). For WT > 16 and (2/λ0)L >

16 we can assert that the frequency samples Z(Fm,Kn) for Fm = m/T , m = −(M/2), . . . ,M/2

and Kn = n/L, n = −(N/2) . . . , N/2 are all independent [18]. They are also complex Gaussian

random variables with zero mean and variance equal to the FWPSD value, which is Pz(Fm,Kn).

Hence, after Fourier transforming we obtain the (M + 1) × (N + 1) complex matrix

Z =




Z(F−M/2,K−N/2) . . . Z(F−M/2,KN/2)

Z(F−M/2+1,K−N/2) . . . Z(F−M/2+1,KN/2)
...

...
...

Z(FM/2,K−N/2) . . . Z(FM/2,KN/2)




so that the equivalent detection problem is

H0 : Z = C + N = W

H1 : Z = ASQ + C + N = ASQ + W

where all complex matrices are (M + 1)× (N + 1) matrices of Fourier transform samples. Also, we

have let SQ(F,K) =
√

LTST (F,K)Qt(F,K) and W (F,K) = C(F,K) + N(F,K). Alternatively,

we write the detection problem as

H0 : Z[m,n] = W [m,n]

H1 : Z[m,n] = ASQ[m,n] + W [m,n]

where m = −(M/2), . . . ,M/2, n = −(N/2) . . . , N/2 and for example Z[m,n] = Z(Fm,Kn) in order

to simplify the notation and the following derivation. Note that all the W [m,n] are independent
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complex Gaussian random variables with PDF W [m,n] ∼ CN (0, Pw(Fm,Kn)) and A ∼ CN (0, σ2
A)

and is independent of the W [m,n]’s. Also, SQ[m,n] is known. To further simplify the notation

let σ2
0 [m,n] = Pw(Fm,Kn) so that W [m,n] ∼ CN (0, σ2

0 [m,n]) and σ2
0[m,n] indicates the variance

under H0.

We next derive the Neyman-Pearson detector and its performance. First consider H1 and

note that conditioned on knowing A the elements of Z are all independent. Thus, the complex

conditional Gaussian PDF is

p(Z|A;H1) =
∏
m

∏
n

1
πσ2

0[m,n]
exp

[
−|Z[m,n] − ASQ[m,n]|2

σ2
0 [m,n]

]
.

The unconditional PDF is just the expected value of this or p(Z;H1) = EA[p(Z|A;H1)] and the

PDF under H0 is p(Z|0;H1). As a result the likelihood ratio is

L(Z) =
p(Z;H1)
p(Z;H0)

= EA


p(Z|A;H1)

p(Z;H0)︸ ︷︷ ︸
L(Z|A)


 .

Now we have that

L(Z|A) =
∏
m

∏
n

exp
[
−|Z[m,n] − ASQ[m,n]|2 − |Z[m,n]|2

σ2
0 [m,n]

]

= exp

[
−
∑
m

∑
n

( |Z[m,n] − ASQ[m,n]|2 − |Z[m,n]|2
σ2

0[m,n]

)]

Letting Y [m,n] = Z[m,n]/σ0[m,n] and G[m,n] = SQ[m,n]/σ0[m,n] we have

L(Z|A) = exp

[
−
∑
m

∑
n

|Y [m,n] − AG[m,n]|2 − |Y [m,n]|2
]

.

Next using the identity

tr(AHB) =
∑
m

∑
n

[A]∗mn[B]mn

we have

L(Z|A) = exp
[−tr[(Y − AG)H(Y − AG)] + tr[YHY)]

]
= exp

[−tr(−YHAG − A∗GHY + |A|2GHG)
]

= exp
[−|A|2tr(GHG) + Atr(YHG) + A∗tr(GHY)

]
.

Next let a = tr(GHG), which is real, and b = tr(GHY) so that

L(Z|A) = exp
[−a|A|2 + b∗A + bA∗]
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and taking the expected value

L(Z) = EA[L(Z|A)] =
∫

exp
[−(a|A|2 − b∗A − bA∗)

] 1
πσ2

A

exp
[
−|A|2

σ2
A

]
dA.

Completing the square we have

Q(A) = |A|2

a + 1/σ2

A︸ ︷︷ ︸
1/σ2


− b∗A − bA∗

=
1
σ2

(|A|2 − b∗σ2A − bσ2A∗)
=

1
σ2

|A − bσ2|2 − |b|2σ2

and therefore

L(Z) =
πσ2

πσ2
A

exp(|b|2σ2)
∫

1
πσ2

exp
[−(1/σ2)|A − bσ2|2] dA︸ ︷︷ ︸

=1

=
σ2

σ2
A

exp(|b|2σ2).

Finally, we decide H1 if ln L(Z) > γ′ or if

ln
σ2

σ2
A

+ σ2|b|2 > γ′

or if

|b|2 > γ.

But

|b|2 = |tr(GHY)|2 =

∣∣∣∣∣∑
m

∑
n

Z[m,n]S∗
Q[m,n]

σ2
0[m,n]

∣∣∣∣∣
2

=

∣∣∣∣∣∑
m

∑
n

Z(Fm,Kn)S∗
Q(Fm,Kn)

Pw(Fm,Kn)

∣∣∣∣∣
2

=

∣∣∣∣∣∣
M/2∑

m=−M/2

N/2∑
n=−N/2

Z(Fm,Kn)S∗
T (Fm,Kn)

√
LTQ∗

t (Fm,Kn)
Ph(Fm,Kn)LT |ST (Fm,Kn)|2 + Pn(Fm,Kn)

∣∣∣∣∣∣
2

which is just (2).

To find the detection performance first note that we decide H1 if |X|2 > γ, where X = tr(GHY)

and all the elements in the random matrix Y are complex Gaussian random variables. Hence, X

is a linear combination of these elements and so is also a complex Gaussian random variable. As

all means are zero we have that X ∼ CN (0, σ2
0) under H0 and X ∼ CN (0, σ2

1). This is a standard

problem that we previously addressed in [1]. It was shown there that

PD = P
1

1+d2

FA
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where PD, PFA denote the probability of detection and false alarm, respectively, and the deflection

coefficient is

d2 =
σ2

1 − σ2
0

σ2
0

.

Hence, we need only find σ2
0 and σ2

1 or equvialently we require E[|X|2] under H0 and H1. Again

reverting to the simpler notation we have

X =
∑
m

∑
n

Y [m,n]G∗[m,n].

Under H0 Y [m,n] = W [m,n]/σ0[m,n], which has second moment equal to one and all samples

are independent. Under H1 Y [m,n] = ASQ[m,n]/σ0[m,n] + W [m,n]/σ0[m,n], which has a second

moment that we can readily calculate. Considering H0 first we have

E[|X|2] = E


∣∣∣∣∣∑

m

∑
n

Y [m,n]G∗[m,n]

∣∣∣∣∣
2



=
∑

k

∑
l

∑
m

∑
n

E[Y [k, l]Y ∗[m,n]]︸ ︷︷ ︸
δk−m,n−l

G∗[k, l]G[m,n]

=
∑
m

∑
n

|G[m,n]|2

so that

σ2
0 =

∑
m

∑
n

|SQ[m,n]|2
σ2

0[m,n]
.

Next under H1

X =
∑
m

∑
n

Z[m,n]S∗
Q[m,n]

σ2
0 [m,n]

=
∑
m

∑
n

(ASQ[m,n] + W [m,n])S∗
Q[m,n]

σ2
0[m,n]

=
∑
m

∑
n

(
Y [m,n] + A

SQ[m,n]
σ0[m,n]

)
G∗[m,n].

Therefore,

E[|X|2] = E


∣∣∣∣∣∑

m

∑
n

(
Y [m,n] + A

SQ[m,n]
σ0[m,n]

)
G∗[m,n]

∣∣∣∣∣
2



=
∑

k

∑
l

∑
m

∑
n

E

[(
Y [k, l] + A

SQ[k, l]
σ0[k, l]

)(
Y [m,n] + A

SQ[m,n]
σ0[m,n]

)∗]
G∗[k, l]G[m,n]

=
∑

k

∑
l

∑
m

∑
n

(
δk−m,n−l + σ2

A

SQ[k, l]S∗
Q[m,n]

σ0[k, l]σ0[m,n]

)
G∗[k, l]G[m,n]

= σ0 + σ2
A

∣∣∣∣∣∑
m

∑
n

S∗
Q[m,n]G[m,n]

σ0[m,n]

∣∣∣∣∣
2

= σ2
0 + σ2

A

(∑
m

∑
n

|SQ[m,n]|2
σ2

0 [m,n]

)2

.

25



As a result we have that

d2 = σ2
A

∑
m

∑
n

|SQ[m,n]|2
σ2

0 [m,n]

= σ2
A

∑
m

∑
n

|SQ(Fm,Kn)|2
Ph(Fm,Kn)LT |ST (Fm,Kn)|2 + Pn(Fm,Kn)

and as an approximation since Fm = m/T and Kn = n/L we have that

d2 = σ2
ALT

M/2∑
m=−M/2

N/2∑
n=−N/2

|SQ(Fm,Kn)|2
Ph(Fm,Kn)LT |ST (Fm,Kn)|2 + Pn(Fm,Kn)

1
T

1
L

≈ σ2
A

∫ 1/λ0

−1/λ0

∫ W/2

−W/2

LT |ST (F,K)|2LT |Qt(F,K)|2
Ph(F,K)LT |ST (F,K)|2 + Pn(F,K)

dFdK

which is (10).
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