

COMPUTER ORGANIZATION (ELE408) LAB 2

The CPU Core and Memory Hierarchy of the TWR-K70F120M

1. Pre-lab Report
ϒ⁄ Read Chapters 3 and 4, 28 of the TWR-K70F120M Reference

Manual.

ϒ⁄ Read this lab handout carefully. Take notes and prepare the programs
required in this handout.

ϒ⁄ Study the Codewarrior design platform and review dBUG command
set.

2. Objectives of this Lab

The purpose of this lab is to learn and gain first hand experiences on the
CPU core and the memory hierarchy architecture of the Arm Cortex
M4 processor. You will apply your knowledge and basic concepts of computer
architecture that you have learnt in the lectures to the lab experiments. In
particular, the concept of memory hierarchy and cache design is the main focus
of this lab.

Specifically, you will learn and exercise the basics of
2.1. Cache design including mapping, replacement, configuration, and

performance impact.

2.2. How to use programmable and high speed SRAM to control the
execution time of a program.

2.3. What can be done to reduce power consumption?

3. Basics

The growing speed gap between memories and processing elements makes the
memory system design become a crucial challenge to computer designers. High
performance computers need sophisticated memory hierarchy to bridge the speed
disparity between processors and the main memory. A large register file is usually small
that can hardly hold the working set of a program. Register file also requires extra efforts
in software to manage it. Highly interleaved memory may provide enough bandwidth, but
the memory speed has to be extremely fast and the number of interleaved memory
modules has to be excessively large in order to provide enough memory bandwidth. In
addition, the interconnection network between processors and memories adds additional
delay to each memory access.

High speed on chip cache memories have been successfully used in any processor
today. A cache memory bridges the speed gap between the CPU and the off chip memory.
Cache memories are generally transparent to programmers and controlled by hardware.
For embedded processors, programmable SRAM is often used to selectively hold
important program and data that need fast execution.

The Arm Cortex M4 processor has both on chip cache and SRAM for speeding up
memory accesses. The cache memory can be configured many different ways by writing
appropriate values to cache control register and access control register. The SRAM is a
user configurable high speed memory to allow quick program execution. In this lab, you
will configure both high speed memories to observe performance differences for different
configurations.

4. Experiment Procedures

This lab consists of three parts:

1) Observation: read and debug given example program, observe both
the code cache and system cache content in debug mode

2) Calculation: given a new pointer step value, calculate the cache line in
processor, test and verify whether your calculation is right in debug
mode

3) Programming: program a Matrix multiplication program. Test the run
time in different cache mode.

4.1. Observation:

Preparation:

u Set workspace as “C:\Freescale\ELE408_lab”, Import project k70-
cache from directory
(C:\Freescale\ELE408_Lab\build\cw\cache\k70_cache):

read the source code ‘cache.c’ under ‘Sources/cache’ very carefully.
Answer following questions.

² What’s the name and address of code cache control
register and system cache control registers.

² What’s the default setting in the program?
² Write a flowchart for the function of both

CacheWriteOperations and CacheReadOperations. Put your
flowchart in your lab report.

u Build the project, run in debug mode:

² When “SAME_SET_ADDRESS_OFFSET” is “0X80”. What’s your
observation of both code cache and system cache, print
on screen your observation of each given cache
operation. Explain your observation.

² What if “SAME_SET_ADDRESS_OFFSET” is“0X200” record
your observation

u Change the configuration of system cache control register by
removing “LMEM_PSCCR_INVW0_MASK” and run in debug
mode again

² What’s the change of cache content? Screen print
your observation and explain why.

Hint: in debug mode, you’ll find a window named “cache”. Select
either code cache or system cache for your observation.

4.2. Calculation:

u Calculate the cache location of each instruction
when SAME_SET_ADDRESS_OFFSET is 0X1000

² Write down your calculation in your lab report.

u Build and debug the program, confirm your calculation

² According to your result, find the cache location in
code cache and system cache, confirm if your
calculation is right, give the screen print in your
lab report

4.3 Programming:

u Design a C program to do intensive matrix computations based on
the algorithm provided.

Get the run time in different cache mode:

² Enable and disable code cache
² Enable and disable system cache
² Enable and disable both code cache and system cache
² Run time in Write-though mode
² Run time in write-back mode

u Run your program for each of the 4 configurations and measure the
execution times. You may change the program size, data size, or
algorithm structure to observe performances. Is there any difference
in your measurements? Why?

u Can you change the data size or program structure to improve the
cache performance. Any idea or suggestions are welcome. Please
put your thoughts and your results in your lab report.

5. Lab Report Requirements

In your lab report, you should discuss your designs, trade-offs between
performance and power, Explanation and interpretation of your results are very
important. The lab report will be graded based on your report and discussions.
Total mark for the report is 100 points.

Ø Prelab report: 20 points

Ø Successful experiment: 50 points

Ø Results analysis, interpretation, and discussions on your design and
engineering constraints: 30 points

In the following items, numbers inside each bracket ¡°[]¡± indicates the point
you will earn on a satisfactory report and discussions.

In your discussion and explanations of your results, you should consider the
following constraints:

Ø What knowledge of mathematics, science and engineering have you
applied in this lab and what tools have you used in this lab?[5]

Ø Economic Constraint (performance/cost ratios) [5]

Ø Manufacturability, Modularity and Expandability
Constraints, Environmental Constraint (power consumption) [5]

Ø Sustainability: Is your design and implementation sustainable? [5]

Ø What is the potential impact of your design on real time
applications? [5]

Ø How would you utilize the memory hierarchy available to you to
design real time applications? [5]

For each of the above programs hand in the debugged source code with
comments; the machine code is not necessary. Be very specific with your
comments that explain what you are doing and why you are doing it.

6. Reference C Program for Matrix Multiplication

To better utilize cache memory, each computer provides a set of cache-optimized

libraries for common computational tasks.

The following example gives a Blocked Matrix Multiplication Algorithm that attempts to

maximize cache hit ratio by increasing the reuse rate of small blocks of data. The

block size should be chosen in such a way that it can be completely stored in the

cache. An application programmer should select the block size based on the available

cache size.

1. j := 1;

2. for jj = 1 to N2/B2 do begin /* jj-loop */

3. for kk = 1 to N/B1 do /* kk-loop */

4. for i = 1 to N1 do /* i-loop */

5. for k = B1(kk-1) + 1 to kkB1 do /* k-loop */

6. begin

7. put X[i,k] in a register;

8. for ii = j to j + B2 - 1 do /* ii-loop */

9. Z[i,ii] := Z[i,ii] + X[i,k] * Y[k,ii];

10. end;

11. j := j + B2;

12. end jj;

For simplicity, we assume that B1 divides N and B2 divides N2.

	

